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It is to be recalled that the denominator of (33) is

formed of radical factors of those roots of L(p), p,,

which correspond to a negative real part of p~/v’l +@lz.

Since these roots are, in turn, the poles of k(p) which

remain fixed irrespective of the choice of the roots of

k(p), (33) is invariant to all structures having the same

insertion loss function.4

IhTe next show the terminating transformer invari-

ance. lkrith respect to Fig. 1 we find that a specification

of a terminating transformer in a basic pattern implies

the existence of the inverse transformer as well. The

terminating transformer is found from the insertion loss

for 0 = O and is given through the relationship

()
1,2

4(1,(0) – 1) = A’ – —
AJ,

(34)

4 Equation (33) is tantamount to a minimum phase statement.
Since L(P)+ cc as p+ m, the transmission function t(p) vanishes
for ~= 1 in the .? plane. One cannot, therefc,re, make any direct
minimum phase statements because of the nonanalyticity of In (t) in
the right-half ~ plane.

so that the transformer is specified to within an inverse.

Since the insertion loss is the invariant specification to

all the multiple syntheses, the transformer is an invari-

ant to the basic root pattern. One may, therefore, always

construct at least one quarter-wave transformer work-

ing into the same real impedance N2 for each basic

pattern.
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Direct Synthwsis of Band-Pass Transmission

Line Structures

H. J. CARLIN, FELLOW, IEEE, AND W. KOHLER, STUDENT MEMBER, IEEE

Absfracf—Realizable band-pass (zero of transmission, i.e.,
infinite loss, at dc) equiripple gain functions are constructed which

permit exact physical realization of systems consisting of cascaded
lines and stubs. The problem of the realization of a prescribed load
resistance is solved when a dc zero of transmission is present due to a
shunt short-circuiting stub. The exact Itilts of realizable load resis-
tance are given for equiripple band-pass gain functions and a straight-

forward method is presented to synthesize any desired value of load

between the predetermined limits. The basis of the synthesis tech-

nique is the choice of location of the shunt etub in the cascaded chain.

It ie shown that the load resistance decreases monotonically as the

distance of the stub from the generator increases, and it is this
property which permits the realization of a wide range of load
resistance from a given gain function. The method is illustrated by

designs of filters, as well as a new form of broadband transformer in

which the low-frequency response is suppressed by shunt stubs.

1. INTRODUCTION

A. A @plication of Band-Pass Transmission n Line Ftinc-

tions

T
HE SYNTHESIS of cascaded, lossless,, commen-
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the amplitude function \ slz(jfl) 12 is rational, then for a

cascade of n lines each of length 1, I su[ 2 must be of the

form

I ~lz(j~) 12 =(1+ Q’)n
P.(W)

where Pn is an even polynomial of degree n in the real

variable W and

Subject to these constraints it is then possible to choose

the function I slz(jfl) 12 so as to approximate desirable

low-pass filter characteristics. One can also represent

the functional form for a broadband impedance trans-

former over a prescribed band, provided at dc I sn(j~) 12

actually takes on the proper value associated with the

mismatch of the load and generator resistances.

One limitation of the cascaded line function is the

fact that at dc the system is completely transparent so

that a band-pass response which provides zero trans-

mission at low frequencies is not realizable. If a short-

circuited stub line is connected in shunt with the cas-

cade of transmission lines, the transmission of the system

will go to zero at dc. Such a network can then exhibit

band-pass filter characteristics and, hence, a considera-

tion of functions which describe cascaded line networks

and shunt stubs is indicated.

A further application of cascaded line-stub network

functions is indicated when one considers a broadband

transformer for a load consisting of a resistor shunted by

an open or short-circuited transmission line. Some typi-

cal examples of such loads are a bolometer in waveguide

backed by a quarter-wave short circuit, a coaxial to

waveguide adapter which involves a probe extending

from the coaxial line into the waveguide and backed in

the guide by a short-circuited length of line, a tunnel

diode termination which can be approximated by a nega-

tive resistor shunted by an open-circuited stub line, and

a microwave absorber which can be represented by a

resistor shunted by a short-circuited stub line.

In the development of cascaded line-stub network

functions which follows, emphasis is placed on band-

pass filter network functions and their synthesis, but the

functions derived find application to the other devices

mentioned previously.

B. Properties of Cascaded Line Nefworks wifh Shunt

Stubs

The use of a transmission line function for cascaded

lines without stubs has been very completely discussed

by Ozaki and Ishii [5]. They consider scattering func-

tions of the form

I Sl,(jcl) 12= (1 + W)”(W – Q1’)2 . . . (w – W’)2

>

Pm(L?)

and discuss means for realizing appropriate functions of

this form by cascaded lines with shunting open-circuited

stubs. Further, they discuss a conformal mapping tech-

nique which will allow the choice of Pm as well as the

real frequency transmission zeros, fll, fd29 . . - , tik so as

to obtain equal-ripple response in pass and stop bands.

It is to be noted that the I slz(jfl) 12 coefficient as previ-

ously given is essentially a low-pass function, and can

be used only for a band-pass response by operating in

one of the higher periods of the variable L?= tan I?l, i.e.,

r <131. A band-pass response with a zero of transmission

at dc requires a short-circuited stub and for this case

a very simple technique based on Sharpe’s work [12],

[13 ]- [15] can be used to obtain equal-ripple response

in a band-pass region. This method avoids any use of

the potential analogy with subsequent charge quantiza-

tion [8] and yields simple explicit response functions in

terms of Chebyshev polynomials. It is possible to ex-

tend the technique to the multiple stub case also, utiliz-

ing higher order zeros of transmission at Q = O (de).

An important result of Ozaki’s work [5] is the state-

ment of sufficient conditions on the location of the ~ky

so that in the synthesis of low-pass functions only cas-

caded lines and open-circuited stubs are required, and

no mutually coupled coils or transformers are needed.

Furthermore, the low-pass function can always be ar-

ranged so that

4RIRfi
1s,2(0)]2 = - -

(R, + R.)2

and this assures one that a prescribed load resistance

will be obtained in the synthesis. These results have not

been extended to the exact synthesis of the general band-

pass case with short-circuited and open-circuited stubs,

nor has a criterion been established which enables one

to predict in advance that the synthesis will terminate

in a prescribed load, since the zero of transmission at dc

obscures the input effect of the load resistance. How-

ever, in the case of cascaded transmission line functions

with a simple zero of transmission at dc, as discussed

subsequently, it is possible to describe an exact syn-

thesis procedure, using at most, two short-circuited

stubs, which provides a wide range of control over the

terminating load resistance depending on where, along

the cascaded line structure, the stubs are removed. The

direct synthesis, without a low-pass to band-pass trans-

formation, of band-pass transmission line filters for

prescribed generator and load terminations as de-

scribed here, in which infinite loss occurs at dc, has not

been presented elsewhere in the technical literature to

the authors’ knowledge.

II. DEVELOPMENT OF EQUAL-RIPPLE FUNCTIONS

FOR CASCADED LINES AND A SINGLE

STUB [14], [15]

The case of a cascade of n lossless transmission lines

and a shunt short-circuited stub, all elements having

equal length, will be initially considered. The stub in-
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troduces a simple zero of transmission at Q = O; there- with the essential constraint that F(z2) = cos(2n@ -+ ~)
fore, for this network the insertion gain function which be a rational function, can be satisfied, equal-ripple

is equal to the squared amplitude of the transmission specification will be accomplished.

scattering coefficient I S1212 has the generic form: Consider the following function:

(1)

where Cl= tan 0, @=@, and Pn+l is a polynomial of de-

gree (?z+ 1) in W. The function Slz is a normalized scat-

tering coefficient, with normalization numbers equal to

the prescribed load and generator [16 ] terminations.

Therefore, substituting for Q in the foregoing, one

may alternately express the insertion gain as:

t anz O(secz 0)” sinz O(cosz 0)–(”+1)

1~1,1’=— —
F’,L+l(tan20) = l’,,+l(tan’0)

sin’ 0
—

Pn+,(cos’ o) “
(2)

hTow let x-a cos 19 for which sin” 0 = 1 –cos’ O=

(a’ – X2) /cz2. Under this transformation,

IS121’= :+;(: ‘ —=3––n (a?– X’)+-H.+,(F)
1 1

._ —

Hn+,(x’) – 1 + F(*’)
(3)

l+——

where

H.+1(x2) == Gn+,(x’) – (a’ – @

and

with Gn+l, and Hn+l polynomials of degree (n+ 1) in X9.

The basic problem of equal-ripple specification will

be, therefore, to determine a functional form for F(x’)

which will both exhibit equal-ripple pass band behavior

and possess the requisite poles at x = f a. To accomplish

this, a modification of the basic Chebyshev polynomial

generating function will be employed.

Let X=COS ~ =a cos 6; that is, @ ❑=cos-l (a cos 19).

Furthermore, let F(xZ) = cos (2n@ + 8), where the angle

8 is to be specified.

The pass band is to comprise the interval – 1 <x S 1.

As x varies from + 1 to — 1, the angle q5covers n- radians,

or 2@ covers 2n7r radians. To achieve pass band equal

ripple, the angle 8 is to be constrained in such a fashion

that it monotonically traverses 27r radians as x varies

from + 1 to – 1. Under this constrainf-, the effect of the

angle 8 in the pass band will be to merely add an addi-

tional ripple though not of the same shape factor as that

due to the variation of + If these properties, together

(4)

To insure the monotonic variation of the angle ~ within

the range — 1 <x< 1, the slope dcl/d.v must not change

sign. Evaluating this:

Within the range O <x < + 1, 8 is in the 1s1: and 2nd

quadrants since within this range cos ti goes from +1

through O to – 1. Hence, sin 6 is positive and (d8/dx) .:<0.

Within the range – 1 ~xsO, ~ is in the 3rd and 4th

quadrants. Since both x and sin 8 are negative in this

region, d8/dx is again <O. Therefore, the slope of 6 vs. x

is negative throughout the entire range; the variation

is monotonic. Hence, the argument (2@ +ti) ranges over

(n+ 1) cycles of 27r across the pass band; cos (2n@+6)

repeats (n+ 1) times with 2 (n+ 1) zeros.

The function cos (2nq5 +6) varies between ~ 1 in the

pass band, that is, –l<cos(2n@+~) Sl, for-- lSxjSl.

Therefore, to insure the boundedness of ) s1.212by unity,

the insertion gain function may be specified as:

For this specification, O S ) slzl 2<1, since the denomi-

nator is a}lvays >1 — d. The function cos (2n@+fi) is

>+lforl<lxl <a.

The remaining property that must be considered is

that of rationality. To demonstrate this, consider

cos (2724+8) in its expanded form:

cos (2n4 + 6) = cos 2n4 cos d — sin ZJZ4 sin 6.

The product cos 2nq5 cos 6 is rational since cos ;!n+

= T’.(x), the rational Chebyshev polynomial of the fu-st

kind, while cos 6 is, by definition, the ratio of rational

functions previously stated. The function sin ~!nd

= U,n(x), is a Chebyshev function of the second kind.

This function is related to a rational function through

the identity:

(A2.-1J(*) is a rational Pokoomial.

The remaining term is

2azv”(l – X2)(O!’ – 1)
sin6=Jl —cosz6=——

~? _ %2

where we have chosen the positive sign for the square

root to assure that sin 8>0 for x <1, noting that a:21.
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Therefore, sin 2rzq5 sin 8 is likewise rational. Thus,

Cos (2?’24+8)

([2a’– I] X’–a’) T,n(x) –2az(l –X’)da’– 1 Q%,(x) ~,,
.

~z _ ~z

is rational and possesses the requisite poles at x = ~ a.

An alternate specification for I s1, 12 can be achieved

by the definition of a new angle, ( = 8/2, for which:

d 1–X2
sin.$={1-cos2& = a

a2 — x2

Thus :

cos (no + .$) = cos n~ cos $ — sin @ sin f

(8a)

(8b)

and using the identity:

T.+,(z) – XT.(X) = – <1 – x’ u.(x),

we have

Hence, the function COS2 (w++ ~) will be rational. Since

this function is ~ O for – a < x < a, the appropriate

specification for the insertion gain, utilizing this function

is:

I ml’ =
1

1 + 62 COS2(?’2+ + i) “
(lo)

This gives a band-pass type of response of the type

shown in Fig. 3, which is applicable in this case when

q=l.

III. MULTIPLE STUB FILTER FUNCTIONS

Although the case explicitly treated here was that of

the dc zero of transmission of the insertion gain (i.e., a

shunt short-circuited stub or a series open-circuited

stub), the technique is general in nature and may be ex-

tended to other cases of interest by an appropriate trans-

formation. Thus we may extend the idea to obtain a

low-pass Chebyshev transmission line filter with a mul-

tiple zero of transmission in I s12(jfl) I as L?+ ~. In such

a case the gain function for a filter with equal load and

generator terminations must be chosen to be of the form

IdjQ) 12= (1+ qnP.+*(W) “
(11)

Pn+q is a polynomial of order 2 (n +q) in Q with constant

term unity so that there is no mismatch loss at dc, and

(11) exhibits the zero at Q= w (0 =7r/2) of order q in

I SUOQ) 1. Since we are discussing the low-pass case we

let y=a sin $(Y =0, and 13= f?l=0 occur at dc in the mid-

dle of the pass band). Then (11) becomes

Idjfo ]2= 1
()sin2 0

COS2”OPn+q —
COS2f3

1
—— , y = asin O. (12)

~n+Q(Y2)

1 + (a2 _ Y2),

As y+a, I sIZ I has a zero of order q.

We now wish to choose the polynomial Hn+Q(y2) so

as to obtain Chebyshev behavior in the pass band. Con-

sider the function

f(Y) = Cos (ff’o+ @) (13)

where

cos~=asintl=y (14)

and as in (8a) and (8b)

d I+ COS8

d

~2_l (15a)
Cos & = ——— .

Y
.—

2 ~2 _ Y2

d

l–yz
sin~=~l —cos2j=a

~2 _
(15b)

Y’

Then

cos (no + @ = cos nd cos @ – sin nd sin @ (16)

and with

Tn(y)R.(y)
Cos ?’@Cos qg =

<(C22 – y’)’
(17)

a(l — y2)Qn_l(y)Mq–l(y)
sin n~ sin q~ =

<(az – yz)q
(18)

where R~(y), and Mk(y) are polynomials of degree k in

y, we may readily deduce that

1
\ s12(y) 12 =

1 + 62 COS2(?2+ + qi)
(19)

is an even rational low-pass gain function in y with the

appropriate zero of transmission of order 2q at y = a,

0=~/2, and L?= ~.

Similarly, an alternate representation of a low-pass

function with a multiple zero at fl = m (P1 = r/2) has the

form

where it is

term as

1–62
\ S12(Y) 12 =

1 + d Cos (2@l + qa)
(20)

most convenient to determine the cosine
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Cos (2%$ + @) = 2 Cos’ (n@ + @ – 1 (21)

since ,$= 8/2. Hence, I s12(y) ] a of (20) may also be writ-

ten

I s,,(y) 1’=
1 — .

2e2
(22)

1+ ~ cost (12r#l+ qg)

A typical realization of either (2o) or (22) is shown in

Fig. 1. Here the zeros of transmission are achieved by

series short-circuited stubs which present open circuits

at O= 7r/2, and open-circuited shunt stubs which present

short circuits at 6 = 7r/2. In Fig. 1 Kuroda’s identity is

used so that all stubs are open-circuited shunt stubs.

-. . . . . .

(a)

(b)

Fig. 1. Low-pass filter with multiple zero at B1=: 7r/2. (a) Realization
with series and shunt stubs. (b) Shunt stubs only by Kuroda
identity.

The type of frequency response characteristic ob-

tained from (22) is indicated in Fig. 2.

1’121:0

\!
-a :( 0

I

Fig. 2. Chebyshev low-pass response with higher
order zero at 6’= T/2(ti=3, q=2).

In a manner similar to that discussed for the low-pass

case we may deduce a Chebyshev response functions

for a multiple stub band-pass filter or transformer with

a higher order zero of transmission at dc. Thus the avail-

able gain in the Q plane is easily inferred by extending

(1) to give

This is realized by n cascaded lines amd q stubs, but

stubs must be both series and shunt connected with

respect to the lines. The gain function of (23) has a zero

of transmission of order 2g at Q = O.

Let

%= Q’COS6’ (24)

then as a function of x, and paralleling (3) we obtain

1s1212= 1~+ ~n+,($’) “
(25)

(az – *2)Q

An appropriate choice of the polynomial hr.+, is ,ob-

tained from the expression

Hn+Q(x2)

(a2 – ?#2)Q
= # COS2(?’2+ + @ (;!6)

where, in the usual fashion,

Cosf$=z (2t7a)

Thus

ls121’=—
1

1 + ,’ COS2(?2@+ qg) “

(27b)

Of course, a form similar to (20) may also be employed.

It is readily shown that I s12] 2, as given by (28) is

rational, realizable, and has the appropriate gth order

zero of transmission at x== *CJ, or at both O= O, r,, A

plot of a typical characteristic is shown in Fig. 3. A

variety of scales are shown corresponding to the difler -

ent variables used, but the variable proportional to rea~

frequency is O=/31= wl/c, where c is the phase velocity

of the wave on the transmission line. The response in O

exhibits the higher order zero of transmissicm at both

cutoff points of the pass band, since the response is

symmetric in L9about the quarter-wavelength point.

1
0 ,..,-l(,,. ) lr/2 ..,., ~~,

a T (9=i3L

1“
m al-m –n 0 (1=,. ”9

Fig. 3. Chebyshev band-pass response with higher
order zero at 0=0, T; (n=3, q=3).

A filter structure corresponding to n =3, g== 3 (3 cas-

caded lines, 3 stubs) is shown in Fig. 4. In this case the

Kuroda identity does not apply, and while it is possible

to relocate the stubs at different points along the lines,

the series stubs cannot be eliminated. In other words,

a multiplicity of only shunting short-circuited stubs still

produces only a simple zero of transmission in Slj at the

origin.

Fig. 4. Band-pass multistub filter.
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In order to apply the band-pass filter function we

must determine a, n, g, and e from the specifications of

the problem. The quantity a is determined by the band-

width requirement as in the calculation of a cascaded

line filter. Thus, we find the common line length is

(29a)

where AX and AL are wavelengths at the high and 10IV

frequency band edges. Then in

27rl
/31=0=7

so that using (24) with ~= 1 at A =X

(29b)

1
~=

27rl “
(30)

Cos—
AL

To determine the pass band tolerance, refer to Fig. 3,

and note that

10 log (1 + c’) = Lp (31)

where LP is maximum insertion loss in the pass band in

decibles.

In order to compute the number of lines and stubs

(n and q) we use the required stop-band insertion loss

and approximate

we have

Tn(t) =

u.(z) =

(28) by assuming

‘2n-l%n,

~1 _ *2 2.-I-Y.-1,

Then we may approximate

x>l. In this case

$>1 (32a)

%>1. (32b)

In any physical transmission line filter it is usual to

separate the stubs by lines, otherwise a number of stubs

must be interconnected with zero line separations, an

impractical procedure. Hence, q <n+ 1. If we take g = n

in (33)

1

[

~2_ln

COS2(?’24 + qg) = ~ (2*)4 1,#>1, q=?z. (34)
~z — X2

It is now a simple matter to approximately determine

an integer n for a prescribed stop-band loss. This can

be checked subsequently from the exact expression and

if necessary modified by adding or subtracting one line

or stub.

As an example of the procedure suppose we consider

a band-pass filter with

1) ~1,= 2000 Me/s, j~= 3000 Me/s.

2) IYlaximum pass band loss 0.16 dB.

3) At 1000 Me/s response to be down approximately

50 dB.

Then

10log (1 + e’) = 0.16

~ = ().2.

The common line length is (29a)

1 10X15
l=— = 3 cm.

2 10+15

Thus

1 1
~=— .—

3
— = 3.24.

Cos 72°
Cos 27r —

15

At 1000 MC the value of x is

3
X = ffCOS 19= 3.24 cos2T—

30

= 2.62

and, because of the symmetry of the characteristic, this

loss also occurs at x = – 2.62 or 6 = 144°, j= 4000 NIc.

Using (28), and neglecting the unity term in the

denominator, the stop-band loss is

LS = 10 log ,2 COS2(mj + q<)

and for our problem, (34) gives

0.04
62 COS2(7’20 + qg) = ~

[ 1(2 x 2.62)4 3“24’ – 1 n
3.24Z – 2.622

—— 0.01 [3000]”

and with

ft=q=2

we get

— = 10log 9 x 104 = 49.6 dB,

1010g IS:21’
so that two lines and two stubs are a reasonable choice

for the prescribed specifications. We may compare re-

sults for the stop-band loss when only one stub is used

by using (33) with q =1. Thus, for e = 0.2

At 1000 Me/s and 4000 Me/s, x= 2.62:

n=z,q=z; L.=49.6 dB

n=3, q7=l; L~=42.O dB

n=4, q=l; Ls=52.O dB

IV. ADJUSTMENT OF LOAD BY PARTIAL

STUB EXTRACTION

Band-pass filters and transformers which utilize a

single short-circuited shunt stub in addition to cascaded

lines are important from a practical point of view. This

type of design is useful in that no open-circuited stubs

are required (an open circuit may be difficult to realize
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at high frequencies) and series interconnected stubs,

which are generally impractical at high frequencies, are

also eliminated. The single shorting stub produces a

simple zero of transmission at the origin and provides

the means for obtaining a band-pass filter with reason-

able cutoff characteristics and dc response suppressed.

The main difficulty in designing the single stub band-

pass filter or transformer is that, if conventional meth-

ods of synthesis are employed, the load cannot be pre-

scribed in advance. This is due to the zero of transmis-

sion at dc. In contrast to this, a low-pass configuration

which only employs cascaded lines is transparent at dc

and the input impedance is precisely the load impedance

at u = O. When the shorting stub is present, the input

impedance at co= O is zero regardless of the load; hence,

the dc impedance condition yields no direct information.

In order to handle this problem let us first examine the

effect of synthesizing the network by changing the point

along the cascade chain at which the stub is placed. We

will show that the terminating load resistance decreases

monotonically as the placement of the stub is postponed

to points along the chain further removed from the

input.

Consider Fig. 5(a). Here the stub is located at the

front of a line section. Since a stub (all lines and stubs

of same length 1 and propagation constant ~) acts like

an inductance in the i domain. (A, not to be confused

with wavelength, is the complex varialble which con-

tinues Q = tan @ into the complex frequency domain

[1], [2]. At real frequencies in the transformed variable

Q, A = jfl. More generally A = Z +jQ, corresponding to

~ = u+jco.) The input impedance z is given as the paral-

lel combination of L.1 and ZI

LIXZ1(A) LIA
Z(A) = - —.

LIA + Z,(k) =

(35)

1+~-h
Zl(x)

Thus in the neighborhood of A = O using (36) in (38a)

(a, –a)A+a2A2 +...
Z(1)(A) Ik+o= (7 —. (38b)

a — al~z — a2A3

Higher order terms may be disregarded in the denomi-

nator with respect to u, hence

Z(l)(A) /’k+o= (al — u)A + a2k2 + . . . = /Ilk + blkz + . . . .

-c,— r,=L, ——.—.

— A

‘L I

Y

,,--

(a)

‘-a--- -JRL2
(b)

Fig. 5. Effect of stub location RLI >RL > RL~. (a) Stub extracted in
front of a line. (b) Stub extracted at end of a line.

The impedance z(l) (X) is positive real, hence at the

simple zero A = O the leading coefficient must be positive

bl=(al–m)>O. (39)

As before we may evaluate the load impedance :1S

RL2 = zZ(0) and applying the method of (37) and sut)-

stituting from (36)

and since (al —a) = (LI —u) >0, then (LI —U)2<:LIZ and

RLZ < RL1. (40b)

Expanding about h = O
Thus the final load resistance decreases monotonically

as the terminal plane for stub extraction is chosen fur-

L12A2
z(k) = LIX — —+”””= aji+aJ2 +....

(36) ther from the generator. Since [see (36)]

21(0) bl=Lz=(al –a)=(Ll–a)

But with the stub eliminated it is clear that ZI(0) = R~l (40a) also yields
so that

LZ2 R~,
— Lz < L1. (411)

zI(0) = — ~ = RL1. (37) L1’ – El ‘
az

We may summarize the results thus far by expressing

Suppose now we first extract a line before we remove the pertinent quantities in terms of the input imped-

the stub. Then, as in Fig. 5(b), a line is extracted start- ance z(P). Thus:

ing at terminal plane x — x and the stub is located at

y — y. Richards’ formula [2] may be used to obtain the
L, = aI = z’(O) (42a)

impedance z(l) at the end of the extracted line in terms L, = L, – o- = z’(O) – z(l) (42b)

of the properties of z. Thus 2

RLI=–~=–
2 [z’(o)] 2

z(x) – Xz(l)
(m)

a2 z“(o)z(l)(x) = z(l) ~_~(~ (38a)

[1

[z’(o) - z(l)~ . (42(3)
RLZ = ~ RLI=–2

Since z(A) is realizable, hence positive real, z(1) =U >0. z“(o)
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Thus the stub characteristic impedances Ll, Lz and

the final load values RLI, RL2 may be computed in ad-

vance from the input impedance.

Suppose that the desired value of terminating load

resistance &Z lies. between the values RLI, RL2 of (42c)

and (42d), RL2 < RL2 < RLI. We may extract only a por-

tion of the stub at the front, say ~, then extract an

additional stub ~z at the end of the line and achieve the

desired resistance value ~Lz. Note that the two shunt

stubs do not change the order of the simple zero at the

origin.

To see how we may predict ~ in advance for a pre-

scribed load, we assume a given impedance z(h) with

LI, Lz, RL1, and RL2 known according to (42). Now sup-

pose ~ is removed at the front. Then the remaining

stub, ~1 which combines in parallel with ~ at the front

to give LI has characteristic impedance

LIE
LI=_ .

LI – LI
(43)

The impedance looking in at ~1 is

ZXZ(A)
2(A) =

LA – Z(A) “
(44)

If, instead of removing ~1 at the front we defer the re-

moval of this stub reactance (~, the partial reactance is

presumed extracted) to the rear of the line section then
.

a stub L2 will be available at the end of the line section,

By (42b)

L, = LI – 2(1) (45a)

and using (43), (44), and (42b)

LI – z(l) ~2L2
. (45b)“ = ‘2 (~_ L1)(~ – z(1)) = (~ – L,)(z – z(1))

Then the new load resistance

and using (42d)

Solving for Z:

Thus with & prescribed, satisfying

RLZ < ~L2 < RL1

(46)

(47)

one can easily calculate the characteristic impedance ~

when a ~artial stub extraction is Derformed.

As an example which is not intended to be practical,

but which merely illustrates the procedure, consider the

admittance

It is clear that the total stub extraction yields

1
—=10
LI

1
—

1 LI 10

z=
= 110

1=
l–— 1–:

y(l)L1

1

[

0.01 + A
— ~ 10+A

E1 “ dh 11 + O.OIA ~+11

d

[

0.01 + x
.— A

d~ 11 + O.olx X+o”

This derivative is merely the leading term of the power

series obtained by expanding at A = O

0.01 + A
A = O.olk + (1 – 1O-4)A’ + $.. .

1 + O.olx

Therefore

1
— = 0.01, RLI = 100.
RL2

Also

(48a)

‘L2=(:PL’=(32100=0825Q‘48b)
Hence

0.825< &’ <100

which represents a very broad range of possible values.

Suppose we wish k., = 1. Then by (47)

z(1) 1
z= .

d

RLZ
= 1Q (49a)

1– —
()

11 1–:
&’

thus, the stub in front has unit characteristic impedance.

Then the stub at the end of the line is (45b)

~2L,

‘2 = (z – L,)(Z – z(l)) =

110(1-$(1-+)

(49b)

. .
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The line separating the two stubs has characteristic

admittance

= 10 mho.

Figure 6(a) shows the realization of the given impedance

function with the stub immediately extracted, and Fig.

6(b) shows the synthesis for a one-ohm load.

‘Z=zzl”’’””c’
(a)

L
Y(h)- IMHO 10MHO 90 MHO

1
— 1 =’:1

1 MHo

(b)

Fig. 6. Control of load resistance by stub location. (a) Realization
of Y(x) with maximum load impedance. (b) Realization of
Y(k) for one-ohm termination.

V. REALIZABILITY OF A PRESCRIBED

LOAD RES~STANTCE

Section IV has shown that the load resistance can be

adjusted over a wide range by choosing the point at

which the extraction of the shunt short-circuiting stubs

takes place. In applying this technique to the synthesis

of a single stub filter function, it would be important to

determine the bounds on the load resistance before the

actual synthesis is carried out, to avoid needless factor-

ization calculations. The highest value of load resistance

occurs when the stub is at the front of a cascaded line

filter, and the lowest bound when the stub is across the

load. If the prescribed load resistance falls within these

bounds we may proceed with the filter synthesis and, as

each cascaded line is removed, compute [(42c) and

(42d) ] the bounds on R. with the stub at the front, or

at the rear of the following line section. fit the particular

line section where the prescribed load falls between the

two computed values, the partial stub extraction meth-

od described previously is used to realize exactly the

given terminating resistance.

It is the purpose of this section to determine bounds

on realizable terminating load resistance from the @re-

scribed insertion gain function of the cascaded line net-

work when this function has a simple zero of transmis-

sion at the origin in the X plane. One wishes to know the

bounds without proceeding with the detailed synthesis.

Referring to Fig. 7, the input admittance with the

stub at the front of the filter has the form

Ys
y(k) = y -t- yl (50)

where Y~ is the characteristic admittance of the stub,

and the other quantities are as indicated on Fig. 7.

of Band-Pass Structures

%
I T t

+ j?i?-ii?-:---l”hy,
Fig. 7. Schematic of single stub-cascaded line system.

Then

Re y(0) = g~. (51)

At any frequency, the input conductance R, Re y(jfl),

normalized to the generator impedance R?, is related

to the scattering coefficients of the stub-cascaded line

network (normalized to R@and RL) by [16]

The second relation of (52) follows because the trarls-

mission line network is lossless.

Now, by (51)

R, Re y IM = R,gL. (5!3)

Hence, with

1 – Rgy
.911=

1 + R,y

we have

11+s,,1’= 1+1- R’Y2=11+4R,,T
1 + RQy

and using (50) with y~(o) = gL! and ~ ‘.i~

4~2
—.

R,z Y,sz mm

(54)

In order to utilize (52) to determine a constraint on

the load resistance, we must presume a form for \ s12\ 2,

the available gain function of the system. Let us use t!he

single stub band-pass function of (6). Then applying (3)

l–# l–e’
I s,2\2 = ———— (55)

1 + ,’ Cos (2724 + T = ~ + &l(@
——
~z _ #

where ~zfl(xz) = lYn+l(x2) is an even polynomial in x.

Hence, using

~2 = sinz 0 az(l — COS2e) ~2 _ ~z

—. . —. (.56)
Cos’ o X2 X2

where O and x are defined by (29b) and (24), respec-

tively, we obtain
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and

fl(a’) = (az – x’) Cos (2?24 + a) l==.. (57b)

If the gain function is of the form of (10), then (57a)

becomes

a.2R~YS2
gL =

4e2f,(a’)
(57C)

with

j,(a’) = (a’ – *’) cm’ (no+ .$) l.=.. (57d)

Equations (57a) and (57c) are essential y identical

(c’<<l) except for ~1 and f,.

We thus have a relation between gL and the stub

characteristic admittance Ys. In order to solve for g~

in terms of known parameters [i.e., e, a, j(a~) and Ru ]

we must seek an additional relation. This is obtained

from gain-bandwidth theory.

Consider a generator R, feeding a Iossless two-port

terminated in RL = l/gL. At the input, an inductance

L is in shunt with the two-port. This emulates Fig. 7 in

the A plane with L = Ys.
Suppose the scattering parameters of the lossless two-

port (including the shunt stub) are sl,(h), s,,(X), s,,(~)
—— S21(X), normalized to Rg at port one and RL at port two.

Then, because of the stub of shunt reactance= LQ
= YS–lQ, the following integral relation must be satis-

fied [17], [18]

J
ml

~ln—
]S:, ]2 ‘Q= R;s - P.

(58)
o

If the lossless two-port only contains commensurate

transmission lines then s1l(X) is a rational function and

in the preceding expression P is given by

P=~; >o (59)

where AK are the right-half plane zeros of s1l(X), and P is
. .

a posltlve real quantity since the zeros have positive

real parts and are real or occur in conjugate pairs.

The integral expression (58) may be expressed in

terms of the prescribed insertion gain function \ s,,(jfl) [ z

since for a lossless two-port

1 – ] Sl,(jfl) /’ = I Sll(jxl) j’

Thus the constraint of (58) becomes

Q

and

sml 1 27r
—— dn = — – P (60)

— ln 1 – [ Slz(jw 1’il w R, YS

2T
Ys =

R,(Q + P) “
(61)

We may substitute this in (57a) or (57b) to determine

&=l/gL

e2fI(a2)(Q + P) 2
RL = R. = CR,(Q + P)2 (62a)

(1 – e’)a%’

and

RL = & ~2fZ(CY2)(Q+ ~)z
~2T2

(62b)

where C as defined by (62a) or (62b) is therefore only

a function of the gain characteristic.

Thus with the stub immediately extracted at the gen-

erator end of the network, the ratio of load to generator

resistance is

~ = C(Q+ P)’
9

(63)

where RL1 is the load obtained by synthesizing the net-

work by first removing the stub.

In order to determine the effect of extracting the stub

last, i.e., at the load end of the network, we may use

the same gain function I slz 12, but we must synthesize

the cascaded line network from the back end and adjust

the back end resistance so that the generator resistance

which now plays the role of termination is Rg. The only

effect of this is to interchange RL and Ra in (63) so that

R,
— = C(Q + P)’
RLZ

(64)

with RL2 the terminating resistance when the stub is re-

moved at the load end of the cascaded chain, and Q and

P as previously defined.

The final problem in using these relations to obtain

the bounds on RL is to ascertain the value of P. This

parameter is not unique, but depends on the choice of

zeros for S1l(A).

The prescribed available gain function is sI,(X)S,Z( –X).

The function s,,(}) is obtained by factoring SII(A)SII( –X)

= 1 – sIZ(I) SIZ( –k). In this factorization process the

poles (denominator zeros) of SII(A) must be in the left-

half A plane, but the zeros may be distributed in a vari-

ety of ways. These zeros will occur as image pairs about

jfl in the left- and right-half planes, and will be either real

or occur in complex conjugate pairs. Thus the zeros of

s1l(A)s1l( —A) will be symmetrically located with respect

to both the Z and j~ axes, If the degree of s,,(A)sII( –A)

is 2n we may select any n of the zeros for s1l(A) provided:

a) they form conjugate pairs; b) if a zero Xl, is selected

its image zero with respect to the J2 axis is not used.
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Let us suppose that any permissible set of n roots is

chosen for the numerator of s1l(A) from the 2n roots of

s1l(A)s1l( —A). Denote this choice as AI, and the value

of P (59) as PI. A complementary set o [ roots ~2 is de-

termined with all the left- and right-half plane roots

of PI interchanged. This gives P the value P2. Suppose

that PI ~ Pz. Further, let the value of P be PO when all

the n roots are chosen in the right-half plane. Clearly

this is the largest value of P and

PI + P2 = Poe (65)

Now when the stub is at the head end of the chain,

(63) applies. Let the two values of (R.u/R.) for the

complementary choice of rOOts @l and 92 be rLl, ?’Lz.

RLI
~ = 7L1 = C(Q + PJ2 (zeros PI in SII(A)) (66a)

9

RLI
— = ?L’r = C(Q + PJ2 (zeros P2 in SI1(A)). (66b)

R.

The parameter Q only depends on the prescribed gain

function so it is the same in both (66a) and (66b).

Similarly, let rLs, ?’L,l correspond to the normalized

load resistance values (RLz/Ro) when the stub is re-

moved at the load termination of the transmission line

chain.

If the input scattering coefficient of the chain is sII(X)

normalized to ROand the back end scattering coefficient

is sZ2.(A) normalized to RL, then the unitary require-

ment on jfl =h imposes

S12(A)
S22(A) = – Sll(–k) —

S12(–; “
(67)

The function sl~(k), as determined from the gain func-

tion form of (1) must be

where D.(A) is a Hurwitz polynomial of

Then denoting

we deduce from (67)

AT1l(–A) .
S22(A) = +-

Dn(h)

(68)

degree n in A.

(69)

(70)

There is actually no ambiguity of sign since the pres-

ence of a stub forces the input reflection factor at dc to

be that of a short circuit, hence the sign in (70) is

chosen so that

S22(0) = – 1. (71)

The consequence of (70) is that if a set of zeros is

chosen for s1l(X), then the complementary set appears

in szz(h). Hence if the set P1 is chosen for s1l(A), we get

p, in s,Z(A) and when the stub is at the rear (64) gives

1

“; =C(Q + P2)=

Similarly

1

““’ = C(Q + P,) =

2$)3

L (zeros PI in sJ. (72,,)
?’L2

-1– (zeros *2 in S, I). (721:,)
?’Ll

These results are summarized in the following table.

Stub IRoots of I I’L = RL/Rg
1

Roots 0[
Location Sll(k) S22(A)

Front IA f’L1=c(~+F1)2

Front
P2

P’2 ?L2= C(Q+PZ)2 PI
1

Back PI yLa. — P2
?’L2

1

Back A yz4 = —

l’L1,

With P1~ Pt the table indicates that

?’Ll ~ rLz (73?L)

7Ls k qL4. (73b)

Furthermore, we have already shown that when the

stub is located at the front, it gives rise to the largest

value of terminating resistance for a prescribed reflec-

tion factor function. Hence with the PI zeros in sII(A)

we must also satisfy

f’Ll > ~L3 (74iL)

and with PZ zeros in sll(h)

The absolute maximum for t’L must occur for the

largest value of P, i.e., when all the zeros of s1l(X) are in

the right-half plane, i.e., P =P~ =PI, rL=?L,l. Then

Pz = O and, referring to (74b), the minimum value of

?’L = VLJ. Thus

?L-~.X = C(Q + Po) ‘ (75a.)

1 1
(75b)

‘L-rein = C(Q + P,)’ = “‘i L-mzx

However, it may not be possible to realize all values

of ?’L between these limits. Two cases may be distin -

guished by referring to the inequality constraints of (73)

and (74).

Case 1: ?’L2 >1, P1 > Pz. For the distribution of zero’s

A, corresponding to 7L1 as in the table YL1 > rL:! >1 and

by the stub extraction technique we may defer the stub

removal until the very end of the chain and obtain

?’L~~r~~rL& On the other hand, we may place the com-

plementary zero set PZ in SU(X) and, by deferring stub

extraction until the end of the chain, obtain ?’L2 > r L

> ?L4. As indicated in Fig. 8 we can therefore cover the

entire range between ?’Ll and rLh. Hence
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1------I---rLl CASE1

‘L 4 ‘L3 ‘.O ‘L2 ‘L I

(*) (*) (*) (*)

H)CASE
Fig. 8. Range of terminating load resistance.

Now suppose

Case 2: rLz ~ 1. Then the inequalities demand the dis-

tribution shown for Case 2 in Fig. 8. Thus with all zeros

P1 in SII(X), the stub in front gives r~l and by stub ex-

traction we can Only cover the range ?’Ll > rL ~ ?’Lz. With

the complementary set of zeros ~z in SII(X) we cover the

range rL22 7L ? rL4 and, since these ranges do not neces-

sarily overlap, there may be gaps as shown in Fig. 8.

Thus

CaSe 2: rLZ ~ 1 ; rLl ~ ?’L ~ rLs, rLz z rL > rL4. (76b)

Of course, we always have the option of altering the zero

distribution in Sll(h) to attempt to realize the continu-

ous coverage of Case 1, Fig. 8.

It is also clear that a sufficient condition for obtaining

all values of r~–~i. ~ r~s rL...max is that Case 1 aPPIY

when zeros corresponding to @l are all in the right-half

plane, and 92 is the complementary distribution without

right-half plane zeros. Hence, a sufficient condition for

maximum coverage is obtained from Case 1 as

<<rL_min _ rL _ rL—m= for CQ2 ~ 1. (77)

The quantity CQZ can be computed directly without

factorization from the prescribed gain function, al-

though numerical integration to obtain Q may be re-

quired. Furthermore, (77) is a sufficient condition that

assures rL = 1 is attainable, i.e., that a band-pass filter

with a simple dc zero of transmission can be realized

with load and generator resistance equal. More gener-

ally, if (77) applies, this is sufficient to assure the real-

ization of a broadband transformer with any resistive

termination between the values CQZ and l/CQ2.

In order to aid in the application of (77), a rough

approximation of C and Q may be derived. First note

that if the gain function of (10) is used

Is,,\’- 1— (78a)
1 + ,’ Cos’ (r@ + t)

and if (55) is used

/s,,]’=
l–e’

1 + d Cos (2@ + a)

1
.

262
(78b)

1+ =2 Cos’ (?34 + g)

Both of these equations have the form

/s,,]’- 1—
1 + # COS2 (?xj + ~) “

(79)

In order to estimate Q of (60) it is necessary to approxi-

mate the integrand 1/~2 in 1/\ s1l \ 2. In the pass band

we may suppose that ] SIZ12 is flat and is represented by

its average value. In this region I sIZ I z oscillates between

1/1 +~z and 1/1 –y’. Hence the average value of I sIZI a

is

2_~2+c2
0<$S1 \.f12\Av. – — (Eq. 78a)

2 l+d

1
05x51 \~lzlA..2=—

1+62
(Eq. 78b).

With I s1l 12 = 1 – I su 12 we obtain

.52
0<%<1 1~11/Av.2=

2(1 + 62)
S ~ (Eq. 78b) (80a)

ea
0<%<1 [.sll[Av.2=— ~ 62

1+62
(Eq. 78a). (80b)

Since the edge of the pass band occurs at x =1, or

Q= /a’– 1 (see Fig. 3)

and

or

1
— In ~ (Eq. (80a))QB~da2_l (82a)

1
— in $ (Eq. (80b)).QB~da2_l (82b)

To estimate QA we no{e that COS2 (m$+g) >1 in (79)

for 1 <z sa. Thus

l~llla=l- ]s,2]2= ~2cos2 (@’+&)
1 + -# Cos’ (n@ + f)

1
!%l– l<z <a.

72 COS2(?2+ + g)

Hence

1
in —

I S,,l’ % Cos’ ;n@ + Q
l<x~a. (83)
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Now use the approximation of (33) for COS’ (n~+~)

with g = 1

1 ~2—1

()

COS2 (?zft + .$) = — (2z)2@+l) ——
4 ~z — ~z

K2a2

= W(1 + W)”
(84)

where we have employed

and

~2 = 22n(a2 – l). (86)

Then substituting this in (83) we ma,y approximate

the integrand of Q~ and obtain

1 s<aZ—l—— (1+Q’)”dfi?.(87)
y2K2az o

For the gain function of (78a) we use 72= C2; for the

gain function of (78b) we use y2=262.

Finally we may write C(ez<<l) from (62a) and (62b)

as

(88)

with f =fl or fz depending on whether the gain function

we employ is that of (80a) or (80 b). In either case we

may use the approximation (33) which applies when

1 <x <a, and estimate .fl(a2), fz(a’) with the aid of

(57b) and

f,(az) =

.

.

Also

(57d)as “ -

(a’ - x’) Cos (2m#l + 6) I.=a

2(CY2– @ Cos’ (nlj + g) – (a’ -- IN) [x=.

+(2a)2@+’)(a’ – 1). (89a)

fz(a’) = +fl(d) . (89b)

A final, important result concerning the range of pre-

scribed load resistance can be deduced for the equal-

ripple gain functions of (78a) and (78 b). Note by (26)

and (82c) that the numerator polynomial I sn \ 2 as a

function of x is of degree 2 (n + 1). Hence the degree of

the numerator polynomial of sII(A) cannot exceed n+ 1.

Also, the zeros of sII occur as the argument of cos(nq5+~)

ranges over the interval 0< (n@+ ~) s (n + l)m, so that

there are (n+ 1) real zeros in s1l, i.e., all its zeros are at

real frequencies. Furthermore when x= O, ~ =7r/2

[(8a) ], and if n is even then (n@+&) 1,=0 is an odd mul-

tiple of 7r/2, so that cos(n~ + ~) has a zero at ~ = O when

n is even corresponding to a zero at h = w. We may sum-

marize as follows: All the zeros of Sll(k) occur cm the j~

axis (real frequencies), and the degree of the numerator

is n when n is even (to allow for the zero at ~ = m), and

n+ 1 when n is odd. Thus the equiripple gain functions

discussed here result in functions sII(A), zohiclz ?zaw no

right- or left-half plane zeros (they are all on the bound-

ary). The resultant networks must then have Silo\)

= sZZ(}), and P1 = Pz = O. It then follows from the table

that CQ2 = r~l ‘7LZ, l/CQ2 = 7L3 = ?L4. Further, (74) re-

quires YLL ~ r~3, hence CQ2 ~ l/CQ2; therefore CQ2 ~ 1.

Therefore the equiripple gain functions of (78a) and (78b)

result in terminating loads which are always adjustable

between (1/CQ2)sr~SCQ22 1.

A major result of this paper may therefore be sunl[-

marized as the following theorem:

Theorewz: The equiripple band-pass gain function of

(79) containing a zero of transmission (infinite loss) at

dc may always be realized as a cascaded transmissic,n

line structure with, at most, two short-circuiting stubs.

Using this function, a load to generator resistance ratio

rL = .RL/RO maybe realized anywhere between the limi[s

YL1

where, [in (82), (83), (88), and (89) ]

?’Ll = CQ2 > 1.

Thus, a load resistance equal to the generator resistance

is always realizable by appropriate stub extraction from

the equal ripple gain functions considered here.

As an example let us consider the synthesis c}f a two-

line cascade with a single shunting stub

IS1212=
l–d

1 + 6’ Cos (2?24 + 8) “

Choose the following parameters

%=2

~=z.

Let us determine the approximate value of load re-

sistance RO= CQ2 associated with a design which places

the stub at the head end of the chain. Since, by cwr theo-

rem, this load resistance must equal or exceed unity, we

may design a structure by which appropriate stub ex -

traction realizes any termination between RO and l/Ro.

We may use the approximating formulas to (evaluate

RO.Thus, by (87), since we are using the gain function of

(78b), [see (86) for K2]

1

[

Q5 ‘/i

1~+;+—=2(0.01)(48)16 50

= 0.54.
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We evaluate QB by (80b)

in 100
Q,= 1 Inj=— = 2.66.

l./cl’ – 1 43

The value of ~l(a’) is approximated by (89a)

jl(4) = *(4)’(3) = 2(48)(64).

Thus, according to (88)

0.01(2)(48)(64) = ~ 55
c= . .

%%

Hence, the terminating resistance is estimated at

RL = C(QA + QB)’

s 1.55(3.20)2 = 15.9fl

By (61) the stub characteristic impedance is approxi-

mated as

R,Q 3.20
z~=$=p = — = 0.513.

27r — 27r

If the gain function is constructed according to (7) we

have

Cos [2(24) + a] = &

~[@(56 +32~3)+x4(88+48v’3)+ x2(39 +16~3) -4].

[Note that this gives fl(a’) = 2(48)2 rather than the

approximated value 2(48) (64). ]

The function

I42 =
1–62

1 + 62 Cos (2?24 + 8)

for C2=0.01, n =2 is plotted on Fig. 9.

/
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Fig. 9. Band-pass response for cascaded line filter with
a single stub and two lines.

The input reflection factor without right-half plane

poles is now obtained as

0.825A2 + 3.46
SII(A) = –

i’ + 3.355i’ + 4.305A + 3.46 “

Note that, as expected, the zeros of sll(h) are on J2, and

the numerator degree is n =2, since n is even. This

causes no difficulty in the integral of (58), since the

boundary singularities of the integrand are logarithmic

and the contributions of the small semicircles which

avoid these singularities are zero. Thus the principal

value of the integral may be used.

The input admittance is now determined from s1l(X) as

1’+ 4.18A’ + 4.305h + 6.92.
Y(A) =

A3 + 2.53A’ + 4.305i

Thus, if the stub is immediately extracted

Y~ = res Y(x) IX=O = 1.605

1
Zs=—= 0.623

1.605

as compared with the approximate 0.513.

If the cascade lines are now synthesized, the result is

a l-to-17.5 ratio transformer as shown in Fig. 10. The

terminating resistor by exact computation is 17.5 ohms

as compared with the approximate 15.9 ohms. It should

be noted that this is perhaps better agreement than

might normally be expected considering the nature of

the approximations. In any case, we are assured that

RL = 1 is realizable and indeed any load resistance be-

tween (1/17.5) <RL <17.5 may be achieved with the

prescribed gain function. It is rather remarkable that

a wide variety of broadband impedance transformers

are therefore realizable from the same insertion gain

function; e.g., in this case all impedance ratios between

l-to-l 7.5 and l-to-~ are realizable with two lines

and, at most, two stubs, all transformers having the

same reflection losses over the band.

la Zc=,,., $l

(a)

!$l Z.=lo

(b)

Fig. 10. Alternate designs of band-pass transmission line structure,
(a) 17.5 -to-l band-pass transformer. (b) Band-pass filter with
one-ohm terminations.

If RL = 1 is desired the stub extraction technique may

be applied and the result is shown in Fig. 10. In this case

only one stub, rather than the generally required two,

was needed, located midway down the chain, as indi-

cated in the figure.
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Transverse Magnetic Wave Propagation in

Sinusoidally Stratified Dielectric Media

C. YEH, MEMBER, IEEE, K. F. CASEY, AND Z. A. KAPRIELIAN, MEMBER, IEEE

Abstracf—The problem of the propagation of TM waves in a

sinusoidally stratified dielectric medium is considered. The propaga-

tion characteristics are determined from the stability diagram of the

resultant Hill% equation. Numerical results show that the stability

diagrams for Hill’s equation and those for Mathieu’s equation are

quite different. Consequently, the dispersion properties of TM

waves and TE waves in this stratified medium are also different.

Detailed dispersion characteristics of TM waves in an infinite strati-

fied medium and in waveguides filled longitudinally with this strati-

fied material are obtained.

INTRODUCTION

~ HE PROBLEM OF electromagnetic wave propa-

T
gation in a sinusoidally varying dielectric medium

is not only of interest from a theoretical point of

view but also possesses many possible applications [1],

[2]. For example, a section of waveguic[e filled with this

type of inhomogeneous dielectric may be used as a band-

pass filter in the mm or in the optical range. The use of

an ultrasonic standing wave as a modulating device for

certain pressure sensitive media, such as carbon disul-

Manuscript received NTovember .5, 1964; revised December 30,
1964. The work in this paper was supported by the Technical Ad-
visory Committee of the Joint Services Electronics Program.

The authors are with the Dept. of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, Calif.

fide, pentane, or nitric acid at optical frequencies to

achieve a sinusoidally varying dielectric medlium may

be proposed. Other applications, such as the study of

acoustically modulated plasma column and the analysis

of sinusoidally modulated dielectric slab antenna, have

also been proposed. Furthermore, the results should be

very useful in the study of wave propagation in solids

[3].

It can be shown [2] that two types of waves, propa-

gating in the direction of the dielectric inhornogeneity,

may exist: one with its electric vector transverse to the

direction of propagation called a TE wave, and the

other with its magnetic vector transverse to the direc-

tion of propagation, called a TM wave. The resultant

differential equations for TE waves and TM waves are,

respectively, the Mathieu and the Hill differential equa-

tions [4], [5]. The simpler case of the propagation of

TE waves in a sinusoidally stratified dielectric medium

has been considered most recently by Tamir, Wang and

Oliner [1], and discussed briefly by Yeh and Kapriel ian

[2]. The purpose of this paper is to consider the problem

of the propagation of TM waves in such an inhomoge-

neous medium. Since the solution of a I-Iill equation is

required, it is expected that the results will be rather in-


