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It is to be recalled that the denominator of (33) is
formed of radical factors of those roots of L(p), p,,
which correspond to a negative real part of p;/+/14+p 2
Since these roots are, in turn, the poles of k() which
remain fixed irrespective of the choice of the roots of
k(p), (33) is invariant to all structures having the same
insertion loss function.4

We next show the terminating transformer invari-
ance. With respect to Fig. 1 we find that a specification
of a terminating transformer in a basic pattern implies
the existence of the inverse transformer as well. The
terminating transformer is found from the insertion loss
for §=0 and is given through the relationship

4L(O0) — 1) = <N - —1~N>2 (34)

¢ Equation (33) is tantamount to a minimum phase statement.
Since L(p)— = as p— oo, the transmission function #(p) vanishes
for =1 in the { plane. One cannot, therefore, make any direct
minimum phase statements because of the nonanalyticity of In (£) in
the right-half ¢ plane.
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so that the transformer is specified to within an inverse.
Since the insertion loss is the invariant specificatiorn to
all the multiple syntheses, the transformer is an invari-
ant to the basic root pattern. One may, therefore, always
construct at least one quarter-wave transformer work-
ing into the same real impedance N? for each basic
pattern.
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Direct Synthesis of Band-Pass Transmission
Line Structures
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Abstract—Realizable band-pass (zero of transmission, i.e.,
infinite loss, at dc) equiripple gain functions are constructed which
permit exact physical realization of systems consisting of cascaded
lines and stubs. The problem of the realization of a prescribed load
resistance is solved when a dc zero of transmission is present duetoa
shunt short-circuiting stub. The exact limits of realizable load resis-
tance are given for equiripple band-pass gain functions and a straight-
forward method is presented to synthesize any desired value of load
between the predetermined limits. The basis of the synthesis tech-
nique is the choice of location of the shunt stub in the cascaded chain.
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It is shown that the load resistance decreases monotonically as the
distance of the stub from the generator increases, and it is this
property which permits the realization of a wide range of load
resistance from a given gain function. The method is illustrated by
designs of filters, as well as a new form of broadband transformer in
which the low-frequency response is suppressed by shunt stubs.

I. INTRODUCTION

A. Application of Band-Pass Transmission Line Func-
tions

HE SYNTHESIS of cascaded, lossless, commen-
Tsurate transmission line circuits is well estab-

lished [1]-[11]. The results may be summarized
by stating the necessary and sufficient conditions for the
realizability of such a cascaded line structure [1]: Given
a transmission scattering coefficient si(jB8)) [B is the
propagation constant, I the line length | such that under
the transformation

Q = tan Gl
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the amplitude function !slz(jQ) l 2 is rational, then for a
cascade of 7 lines each of length I, | s12] 2 must be of the
form
1+ o)~
oy |e =2 —
l 512(] ) I Pn(92)

where P, is an even polynomial of degree » in the real
variable Q? and

0< |su®P<t, 0K @2< .

Subject to these constraints it is then possible to choose
the function ‘512(j9)|2 so as to approximate desirable
low-pass filter characteristics. One can also represent
the functional form for a broadband impedance trans-
former over a prescribed band, provided at dc l s12(F ) ! 2
actually takes on the proper value associated with the
mismatch of the load and generator resistances.

One limitation of the cascaded line function is the
fact that at dc the system is completely transparent so
that a band-pass response which provides zero trans-
mission at low frequencies is not realizable. If a short-
circuited stub line is connected in shunt with the cas-
cade of transmission lines, the transmission of the system
will go to zero at dc. Such a network can then exhibit
band-pass filter characteristics and, hence, a considera-
tion of functions which describe cascaded line networks
and shunt stubs is indicated.

A further application of cascaded line-stub network
functions is indicated when one considers a broadband
transformer for a load consisting of a resistor shunted by
an open or short-circuited transmission line. Some typi-
cal examples of such loads are a bolometer in waveguide
backed by a quarter-wave short circuit, a coaxial to
waveguide adapter which involves a probe extending
from the coaxial line into the waveguide and backed in
the guide by a short-circuited length of line, a tunnel
diode termination which can be approximated by a nega-
tive resistor shunted by an open-circuited stub line, and
a microwave absorber which can be represented by a
resistor shunted by a short-circuited stub line.

In the development of cascaded line-stub network
functions which follows, emphasis is placed on band-
pass filter network functions and their synthesis, but the
functions derived find application to the other devices
mentioned previously.

B. Properties of Cascaded Line Networks with Shunt
Stubs

The use of a transmission line function for cascaded
lines without stubs has been very completely discussed
by Ozaki and Tshii [5]. They consider scattering func-
tions of the form

<1 + Q?)n(QZ — 912)2 ..
P.(0%)

. (Qz —_ Qk2)2

2 =

>

l 812(j9>

m > n+ 2k
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and discuss means for realizing appropriate functions of
this form by cascaded lines with shunting open-circuited
stubs. Further, they discuss a conformal mapping tech-
nique which will allow the choice of P, as well as the
real frequency transmission zeros, {, s, - - -, { so as
to obtain equal-ripple response in pass and stop bands.
It is to be noted that the |s12(j@)|? coefficient as previ-
ously given is essentially a low-pass function, and can
be used only for a band-pass response by operating in
one of the higher periods of the variable @ =tan I, i.e.,
7 <fBl. A band-pass response with a zero of transmission
at dc requires a short-circuited stub and for this case
a very simple technique based on Sharpe's work [12],
[13]-[15] can be used to obtain equal-ripple response
in a band-pass region. This method avoids any use of
the potential analogy with subsequent charge quantiza-
tion [8] and yields simple explicit response functions in
terms of Chebyshev polynomials. It is possible to ex-
tend the technique to the multiple stub case also, utiliz-
ing higher order zeros of transmission at 2=0 (dc).

An important result of Ozaki’s work [5] is the state-
ment of sufficient conditions on the location of the £,
so that in the synthesis of low-pass functions only cas-
caded lines and open-circuited stubs are required, and
no mutually coupled coils or transformers are needed.
Furthermore, the low-pass function can always be ar-
ranged so that

4R1Re

s 0 2 =
| 515(0) | TR
and this assures one that a prescribed load resistance
will be obtained in the synthesis. These results have not
been extended to the exact synthesis of the general band-
pass case with short-circuited and open-circuited stubs,
nor has a criterion been established which enables one
to predict in advance that the synthesis will terminate
in a prescribed load, since the zero of transmission at dc
obscures the input effect of the load resistance. How-
ever, in the case of cascaded transmission line functions
with a simple zero of transmission at dc, as discussed
subsequently, it is possible to describe an exact syn-
thesis procedure, using at most, two short-circuited
stubs, which provides a wide range of control over the
terminating load resistance depending on where, along
the cascaded line structure, the stubs are removed. The
direct synthesis, without a low-pass to band-pass trans-
formation, of band-pass transmission line filters for
prescribed generator and load terminations as de-
scribed here, in which infinite loss occurs at dc, has not
been presented elsewhere in the technical literature to
the authors’ knowledge.

II. DEVELOPMENT OF EQUAL-RIPPLE FUNCTIONS
FOR CASCADED LINES AND A SINGLE
Stus [14], [15]

The case of a cascade of n lossless transmission lines
and a shunt short-circuited stub, all elements having
equal length, will be initially considered. The stub in-
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troduces a simple zero of transmission at 2=0; there-
fore, for this network the insertion gain function which
is equal to the squared amplitude of the transmission
scattering coefhicient |S12 * has the generic form:

02(1 + 9"
Pn+1(92)

| s12(5) |2 = €h)

with
0 < [su(jor <1

where @ =tan 0, =4I, and P,,; is a polynomial of de-
gree (n+1) in Q2. The function sy is a normalized scat-
tering coefficient, with normalization numbers equal to
the prescribed load and generator [16] terminations.

Therefore, substituting for @ in the foregoing, one
may alternately express the insertion gain as:

tan? f(sec? §)»

P, 1(tan? 8) B

sin? 8(cos? )~ (D

Pn+1(tan2 9)

1|t =

sin? ¢
= @
P, 1(cos?8)

Now let x=a cos 8§ for which sin? =1—cos? 0=
(a?—x?%) /o Under this transformation,

C(Z - x? aZ _ x?
| s12]? = = .
Gry1(x?) (o — &%) + Hpya(o?)
1 1
= = - 3)
. Hopa(x?) 1+ F(«?)
o — x?
where
Higa(0?) = Gua(a?) — (@ — 2?)
and
H, 1(x2
Fl) = — +1(x?) ,
CY2 — xZ

with G,1, and H,41 polynomials of degree (n+1) in x2,

The basic problem of equal-ripple specification will
be, therefore, to determine a functional form for F(x?%)
which will both exhibit equal-ripple pass band behavior
and possess the requisite poles at x = + «. To accomplish
this, a modification of the basic Chebyshev polynomial
generating function will be employed.

Let x=cos ¢ =a cos #; that is, ¢ =cos™! (a cos 6).
Furthermore, let F(x?) =cos (2n¢+8), where the angle
8 is to be specified.

The pass band is to comprise the interval —1<x<1.
As x varies from +1 to —1, the angle ¢ covers 7w radians,
or 2n¢ covers 2u7 radians. To achieve pass band equal
ripple, the angle 6 is to be constrained in such a fashion
that it monotonically traverses 27 radians as x varies
from +1 to —1. Under this constraint, the effect of the
angle § in the pass band will be to merely add an addi-
tional ripple though not of the same shape factor as that
due to the variation of ¢. If these properties, together
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with the essential constraint that F(x?) =cos(2u¢-|9)
be a rational function, can be satisfied, equal-ripple
specification will be accomplished.

Consider the following function:

202 — 1)x? — o?
cos 6 = " - . €))
o — x?

To insure the monotonic variation of the angle § within
the range —1<x <1, the slope d§/dx must not change
sign. Evaluating this:

s —dxa*(at—1)

dx  (a® — a?)%siné
Within the range 0<x< 41, & is in the 1st and 2nd
quadrants since within this range cos § goes from -1
through 0 to —1. Hence, sin é is positive and (dd/dx) < 0.
Within the range —1<x<0, § is in the 3rd and 4th
quadrants. Since both x and sin § are negative in this
region, d8/dx is again <0. Therefore, the slope of § vs. x
is negative throughout the entire range; the variation
is monotonic. Hence, the argument (2n¢-3§) ranges over
(n+1) cycles of 27 across the pass band; cos (2n¢--96)
repeats (n+1) times with 2(n-+1) zeros.

The function cos (2n¢-+06) varies between +1 in the
pass band, thatis, —1 <cos (2n¢+06) <1, for —1 <x <1.
Therefore, to insure the boundedness of { 512! 2 by unity,
the insertion gain function may be specified as:

©)

1 — ¢ 1 — ¢

1+ &F(x?) - 1 4 € cos 2n¢ + 6) .

2 —

(6)

|S12

For this specification, Oélsm{ 2<1, since the denomi-
nator is always >1—e2 The function cos (Zngp-+48) is
> +1 for 1<|x| <a.

The remaining property that must be considered is
that of rationality. To demonstrate this, consider
cos (2n¢+8) in its expanded form:

cos (2n¢ + 8) = cos 2n¢ cos § — sin 2n¢ sin 6.

The product cos 2un¢ cos & is rational since cos Zu¢
= T4,(x), the rational Chebyshev polynomial of the first
kind, while cos 6 is, by definition, the ratio of rational
functions previously stated. The function sin 2u¢
= Usn(x), is a Chebyshev function of the second kind.
This function is related to a rational function through
the identity:

Us(x) = V1 — &% Qau1)(¥) where

Q (2n—1y(%) is a rational polynomial.

The remaining term is

2axv/ (1 — 22 {(a® — 1)

a‘.’,_x2

sind = /1 — cos?s =

where we have chosen the positive sign for the square
root to assure that sin § >0 for x<1, noting that a>1.
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Therefore, sin 2n¢ sin § is likewise rational. Thus,

cos (2nep+-9)

_ ([202—1]#?— a2) T2 (x) — 2a2(1 — 22) /a2 — 1 Qs () o

a? — x?

is rational and possesses the requisite poles at x= ta.
An alternate specification for |si|? can be achieved
by the definition of a new angle, £=48/2, for which:

1 6 2 -1
cos£=/‘/—+g=x4/a (8a)
2 ot — x?
o 1 — &2
sinf = +/1 — cos?§ = a1/ . (8b)
a? — x2
Thus:
cos (n¢ + £) = cos n¢ cos £ — sin ng sin £
a2 —1
- 1 g/ S
1 — «?
— U.(x)- )
@a g/ 55
and using the identity:
Topi1(x) — aTo(x) = — /1 — 22 U,(x),
we have
2 —-1) — Ty T,
cos (ng+ &) = (Ve ) = a)xTu(2) + aTwpa(w) o)

'\/(XZ — 2

Hence, the function cos? (nd+£) will be rational. Since
this function is >0 for —a<x<e, the appropriate
specification for the insertion gain, utilizing this function
is:

1
14 e cos? (no + £)

(10)

| sl =

This gives a band-pass type of response of the type
shown in Fig. 3, which is applicable in this case when
g=1.

I11. MurTtipLE STtUuB FILTER FUNCTIONS

Although the case explicitly treated here was that of
the dc zero of transmission of the insertion gain (i.e., a
shunt short-circuited stub or a series open-circuited
stub), the technique is general in nature and may be ex-
tended to other cases of interest by an appropriate trans-
formation. Thus we may extend the idea to obtain a
low-pass Chebyshev transmission line filter with a mul-
tiple zero of transmission in ]sm( ]Q)I as Q— . In such
a case the gain function for a filter with equal load and
generator terminations must be chosen to be of the form

(14 o)

Prd®) )

| su(jo) |2 =
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P, ,is a polynomial of order 2(n-¢) in Q with constant
term unity so that there is no mismatch loss at dc, and
(11) exhibits the zero at Q= w(§=7/2) of order ¢ in
|312(jQ) ] Since we are discussing the low-pass case we
let y=a sin 6(y =0, and 6 =p]=0 occur at dc in the mid-
dle of the pass band). Then (11) becomes

1

sin? @
cos™ 0P, q

| s12(j2) |2 =

cos2 6

1
=, y=qsinf. (12)
Hyyo(y?)

(a® — 5?)1

As y—a, | s15| has a zero of order g.

We now wish to choose the polynomial H,.,(y?) so
as to obtain Chebyshev behavior in the pass band. Con-
sider the function

J(@) = cos (nd + ¢f) (13)
where
cos ¢ = asinf =y (14)
and as in (8a) and (8b)
1+ coss o — 1 (15a)
cos £ = —_—— =y —
2 o — y?
1 - 32
sinf=+/1 —cos?é{=a (15b)
a2 — yZ
Then
cos (ng + g&) = cos ne cos g — sin ng sin gt (16)
and with
To(9)R,
cos n¢ cos g§ = _\TO(;’):—% an
) . a(l — ¥)Qu-1(3) Mo1(y)
sin n¢ sin g§ = V@ = (18)

where R;(y), and M(y) are polynomials of degree & in
v, we may readily deduce that

1

(19)
1+ e cos? (ng + gf)

1 s12(y) lz =

is an even rational low-pass gain function in y with the
appropriate zero of transmission of order 2¢ at y=a,
f=m/2,and Q= .

Similarly, an alternate representation of a low-pass
function with a multiple zero at @= « (8l=7/2) has the
form

1—¢é

(20)
1+ € cos (2n¢ + ¢d)

| s12() |2 =

where it is most convenient to determine the cosine
term as
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cos (2n¢ + ¢8) = 2 cos? (np + qf) — 1 (21)

since £==6/2. Hence, |s12(y) I 2 of (20) may also be writ-
ten

| s1o(y) |2 = (22)

2e?

1+ . cos? (ne + ¢f)

_ 62

A typical realization of either (20) or (22) is shown in
Fig. 1. Here the zeros of transmission are achieved by
series short-circuited stubs which present open circuits
at=m/2, and open-circuited shunt stubs which present
short circuits at §=x/2. In Fig. 1 Kuroda’s identity is
used so that all stubs are open-circuited shunt stubs.

e @:ﬂlﬂw e
1—:!—0 [D—O

—{—1

(a)

Y P PR
=
(b)

Fig. 1. Low-pass filter with multiple zero at 8= r/2. (a) Realization
with series and shunt stubs. (b) Shunt stubs only by Kuroda
identity.

The type of frequency response characteristic ob-
tained from (22) is indicated in Fig. 2.

Y S,
1+e2cosPin p+aé)

o'"ORDER ZERO

1/(1+€?)
N Is‘z(y)‘

C
{

!
| L
~a -1 ° 1o a y=asinfBf
! :
: f |
_%’ sm-‘:(-é—) o sm"iﬂa) T’{ 6:80
) 1 ] 1
1 o | .
© = 4 W @ £ =tan 8
Fig. 2. Chebyshev low-pass response with higher

order zero at §==/2(n=23, g=2).

In a manner similar to that discussed for the low-pass
case we may deduce a Chebyshev response functions
for a multiple stub band-pass filter or transformer with
a higher order zero of transmission at dc. Thus the avail-
able gain in the Q plane is easily inferred by extending
(1) to give

Q%(1 + Q)

[ $2(j) |2 = ————>

0< 2 < 1.
Pn+‘1(QZ) B 15121 N

(23)

This is realized by » cascaded lines and ¢ stubs, but
stubs must be both series and shunt connected with
respect to the lines. The gain function of (23) has a zero
of transmission of order 2¢g at 2=0.

Let

% = acosf (24)
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then as a function of x, and paralleling (3) we obtain

1
2 = 25
lleI 1+ Hppo(2?) 23)
(@ — a1

An appropriate choice of the polynomial H,,, is ob-
tained from the expression

H,o(2?)
T e cos? 2
G et g (26
where, in the usual fashion,
cos¢p = x (27a)
o — 1
cos f =g ,‘/——— . (27b)
C(2 — x2
Thus
1
| s12]2 = (28)

1+ €?cos? (g + ¢f) '

Of course, a form similar to (20) may also be employed.
It is readily shown that ISlglz, as given by (28) is
rational, realizable, and has the appropriate gth order
zero of transmission at x= +a«, or at both =0, 7. A
plot of a typical characteristic is shown in Fig. 3. A
variety of scales are shown corresponding to the differ-
ent variables used, but the variable proportional to real
frequency is 8 =fl=wl/c, where ¢ is the phase velocity
of the wave on the transmission line. The response in
exhibits the higher order zero of transmission at both
cutoff points of the pass band, since the response is
symmetric in 6 about the quarter-wavelength point.

L R
Iswz'z 10} [5.2[ T lecos?in pHak)

|

T |

| 10+e?) |
|
|

I
|
|
| -
|
|

oM orDER

ZERO o!"orRDELR ZERO

/
a d 0 -1 ~a x=acosfBf
o cos™MI/a) lwr2 cos™ (2 T 8=812
o) JaEo ©|-© —Ja? -y o =tond
Fig. 3. Chebyshev band-pass response with higher

order zero at 8=0, x; (n=3, g=3).

A filter structure corresponding to =3, g=3 (3 cas-
caded lines, 3 stubs) is shown in Fig. 4. In this case the
Kuroda identity does not apply, and while it is possible
to relocate the stubs at different points along the lines,
the series stubs cannot be eliminated. In other words,
a multiplicity of only shunting short-circuited stubs still
produces only a simple zero of transmission in s at the
origin.

| S o pSv— )

Fig. 4. Band-pass multistub filter.
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In order to apply the band-pass filter function we
must determine «, #, ¢, and e from the specifications of
the problem. The quantity « is determined by the band-
width requirement as in the calculation of a cascaded
line filter. Thus, we find the common line length is

1 iz

= — 293
2 Mg+ (29a)

where Ay and Ay are wavelengths at the high and low
frequency band edges. Then in

27l
Bl=0=— (29Db)
A
so that using (24) with x=1 at A=A
- (30)
T o
cos —
AL

To determine the pass band tolerance, refer to Fig. 3,
and note that

10log (1 + &) = Lp (31)

where Lp is maximum insertion loss in the pass band in
decibles.

In order to compute the number of lines and stubs
(n and ¢) we use the required stop-band insertion loss
and approximate (28) by assuming x>1. In this case
we have

To(x) = 2n1gn x> 1 (32a)
Un(x) = /1 — 5220 Ign1 > 1, (32b)
Then we may approximate
a? — 1

1 q
cos? (nd -+ gf) =~ " (2)2(nta) [**2} v>1. (33

a — «x
In any physical transmission line filter it is usual to
separate the stubs by lines, otherwise a number of stubs
must be interconnected with zero line separations, an
impractical procedure. Hence, ¢ <n+1. If we take ¢=n
in (33)
2

\ 1 L@ 1
cos® (ng + gf) ~ Z[(Zx) ﬁ

:I ,x> 1,9 =n (34)
—x

It is now a simple matter to approximately determine
an integer # for a prescribed stop-band loss. This can
be checked subsequently from the exact expression and
if necessary modified by adding or subtracting one line
or stub.

As an example of the procedure suppose we consider
a band-pass filter with

1) £7,=2000 Mc/s, fir=3000 Mc/s.
2) Maximum pass band loss 0.16 dB.

3) At 1000 Mc/s response to be down approximately
50 dB.
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Then
10log (1 4+ €3 = 0.16
e = 0.2.

The common line length is (29a)

1 10X 15
=— ———— = 3 cm.
2 104 15
Thus
1 1
a = = = 3.24.
3 cos 72°
cos 27 —
15

At 1000 Mc the value of x is

3
& = acosf = 3.24 cos 27 —

= 2.62

and, because of the symmetry of the characteristic, this
loss also occurs at x = —2.62 or § =144°, f=4000 Mec.

Using (28), and neglecting the unity term in the
denominator, the stop-band loss is

Lg = 10 log € cos® (n¢ + ¢%)

and for our problem, (34) gives

¢ cos” (n + ¢f) = 0—'%[(2 X 2.62)4_.3’_'2_42—_1}”
4 3.242 — 2.62?
= 0.01[3000]"
and with
n=gq=2
we get
10Tog L = 1010g 9 X 10° = 49.6 dB,

2

1312

so that two lines and two stubs are a reasonable choice
for the prescribed specifications, We may compare re-
sults for the stop-band loss when only one stub is used
by using (33) with ¢=1. Thus, for e=0.2

At 1000 Mc/s and 4000 Mc/s, x=2.62:

n=2,qg=2; Ls=49.6 dB
n=3,q=1; Ls=42.0dB
n=4,q=1; Ls=52.0dB

IV. ADJUSTMENT OF LoAD BY PARTIAL
STUB EXTRACTION

Band-pass filters and transformers which utilize a
single short-circuited shunt stub in addition to cascaded
lines are important from a practical point of view. This
type of design is useful in that no open-circuited stubs
are required (an open circuit may be difficult to realize
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at high frequencies) and series interconnected stubs,
which are generally impractical at high frequencies, are
also eliminated. The single shorting stub produces a
simple zero of transmission at the origin and provides
the means for obtaining a band-pass filter with reason-
able cutoff characteristics and dc response suppressed.

The main difficulty in designing the single stub band-
pass filter or transformer is that, if conventional meth-
ods of synthesis are employed, the load cannot be pre-
scribed in advance. This is due to the zero of transmis-
sion at dc. In contrast to this, a low-pass configuration
which only employs cascaded lines is transparent at dc
and the input impedance is precisely the load impedance
at w=0. When the shorting stub is present, the input
impedance at w=0 is zero regardless of the load; hence,
the dc impedance condition yields no direct information.
In order to handle this problem let us first examine the
effect of synthesizing the network by changing the point
along the cascade chain at which the stub is placed. We
will show that the terminating load resistance decreases
monotonically as the placement of the stub is postponed
to points along the chain further removed from the
input.

Consider Fig. 5(a). Here the stub is located at the
front of a line section. Since a stub (all lines and stubs
of same length / and propagation constant 8) acts like
an inductance in the X domain. (A, not to be confused
with wavelength, is the complex variable which con-
tinues @=tan G/ into the complex frequency domain
[1], [2]. At real frequencies in the transformed variable
Q, N=jQ. More generally A=2435Q, corresponding to
p=0+jw.) The input impedance z is given as the paral-
lel combination of L; and 2

Laazi(h LA
20 = Az1(\) _ 1 (35)
L1>\ + Zl()\> L1
1+
21()\)
Expanding about A=0
L2\%
Z()\)=L1>\"" +‘=d1)\+(1«2)\2+. (36)
21(0)

But with the stub eliminated it is clear that 2;(0) =Ry,
so that

o

az”

z(0) = — = Rp1. (37)

2
Suppose now we first extract a line before we remove
the stub. Then, as in Fig. 5(b), a line is extracted start-
ing at terminal plane x—x and the stub is located at
y—y. Richards' formula [2] may be used to obtain the
impedance z® at the end of the extracted line in terms
of the properties of z. Thus
z(\) — Az(1)

R vy

(38a)

Since z(\) is realizable, hence positive real, z(1) =¢>0.
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Thus in the neighborhood of A =0 using (36) in (38a)
(a1 — o)A+ a\*+ - - -

g - (11)\2 —_ (12)\3

2O [aao = 0 (38h)

Higher order terms may be disregarded in the denomi-
nator with respect to o, hence

Z(l)()\) l‘)\ﬁo = (dl —_ 0'))\ + dz)\2+ ver = b]_}\ + bz)\2 + .

X ¥

(b)

Fig. 5. Effect of stub location Rp;> Rz > Ry.. (a) Stub estracted in

front of a line. (b) Stub extracted at end of a line.

The impedance z®V(\) is positive real, hence at the
simple zero A =0 the leading coefficient must be positive

(39)

As before we may evaluate the load impedance as
Ri12=2:(0) and applying the method of (37) and sub-
stituting from (36)

_ b12 _ (d1 - 0’)2 _ (L1 — 0‘)2

bl=(d1—0')>0.

29 0) = - R =R L9 10a,
(0) b - e 1= Rz (40a)
and since (@1 —0)=(L1—0) >0, then (I,—0)2<L:? and

RLz < RLl. (40]:))

Thus the final load resistance decreases monotonically
as the terminal plane for stub extraction is chosen fur-
ther from the generator. Since [see (36)]

by =Ly = (a1 — 0) = (L1 — o)

(40a) also yields
L2 Ry,
—L? - Ry

» Le< Ly (41)

We may summarize the results thus far by expressing
the pertinent quantities in terms of the input imped-
ance z(p). Thus:

Li = a1 = #(0) (42a)

Ly=1I1,— ¢ =3500)—3) (42b)

Ry = — Z—IZ == 2[:/,28]2 (42¢)
Lp. O -0

RL2 = !:le| RLI = — 2 *‘—*?‘(‘(—))—‘ . (42(31)
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Thus the stub characteristic impedances L;, L; and
the final load values Ryz3, Ri, may be computed in ad-
vance from the input impedance.

Suppose that the desired value of terminating load
resistance R, lies between the values Rzy, Rzs of (42¢)
and (42d), Ry < R1s <R We may extract only a por-
tion of the stub at the front, say L, then extract an
additional stub L, at the end of the line and achieve the
desired resistance value Ry, Note that the two shunt
stubs do not change the order of the simple zero at the
origin,

To see how we may predict L in advance for a pre-
scribed load, we assume a given impedance z(\) with
Ly, Ly, Ry, and Ry known according to (42). Now sup-
pose L is removed at the front. Then the remaining
stub, L; which combines in parallel with I at the front
to give L; has characteristic impedance

L Ll (43)
- L
The impedance looking in at L; is
Ihz(\)
) = ————— (44)
LA — 2(\)

If, instead of removing L; at the front we defer the re-
moval of this stub reactance (I, the partial reactance is
presumed extracted) to the rear of the line section then
a stub L, will be available at the end of the line section.

By (42b)
Ly = L; — 2(1) (45a)
and using (43), (44), and (42b)
PO Ly — z(1 3L
Lo=Tp o D = - (45b)
(L — L)L —3(1)) (L~ L)L —3(1))
Then the new load resistance
. Ly\?
Rre < Rpo = <T> R
Ly
o ()
L =— -Z- _ z(l) Ll L1
and using (42d)
A z 2
Rio==———) Rzo. 46
y (L - 2(1)> . (46)
Solving for L:
— 1
A O N (47)

1 - 4/ s
Ri»
Thus with Ry, prescribed, satisfying

Ris < Rio < Rps

one can easily calculate the characteristic impedance T
when a partial stub extraction is performed.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

May

As an example which is not intended to be practical,
but which merely illustrates the procedure, consider the
admittance

10 001+ A
) = — b —— %
YO =t T oo

Tt is clear that the total stub extraction yields

— =10
1
1
1 L 10
— = = = 110
L, 1 10
y(1) L, 11
1 d 0.01 4 A
—= —[10 + A ———_F-—}
R dx 1+ 0.01\ .0
d [}\ 0.01 + A }
a1+ 0.0 e

This derivative is merely the leading term of the power
series obtained by expanding atA=0

A DOLEN o + (1 — 1092 +
100y
Therefore
1
—_—= 0'01’ RLl = 100. (48&)
L2
Also
R (L2)2R (10>21oo 0.8250.  (48b
Ly = I 1 = 110 =Y . ( )
Hence

0.825 < Ry, < 100

which represents a very broad range of possible values.
Suppose we wish Rz2=1. Then by (47)

z(1)
10
11 (1 — —)
11

Z = =
1— 4/ s
-RL2
thus, the stub in front has unit characteristic impedance.
Then the stub at the end of the line is (45b)

=10 (49a)

L I°L, 3 1
(L — L)(L — 2(1)) 110 <1 _ i) (1 _ j‘>
10 11
_1
-0 (49b)
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The line separating the two stubs has characteristic
admittance

1 10 1 0.01 + A
V==t ~T7 T
9(1) 1) |:>\ A + 14+ 1[).01>\:L=1

= 10 mbho.

Figure 6(a) shows the realization of the given impedance
function with the stub immediately extracted, and Fig.
6(b) shows the synthesis for a one-ohm load.

Y{A)— 10 MHO | MHO % 0.0l MHO

(a)
(b)

Fig. 6. Control of load resistance by stub location. (a) Realization
of Y(A\) with maximum load impedance. (b) Realization of
Y(X\) for one-ohm termination.

V. REALIZABILITY OF A PRESCRIBED
LoaD RESISTANCE

Section IV has shown that the load resistance can be
adjusted over a wide range by choosing the point at
which the extraction of the shunt short-circuiting stubs
takes place. In applying this technique to the synthesis
of a single stub filter function, it would be important to
determine the bounds on the load resistance before the
actual synthesis is carried out, to avoid needless factor-
ization calculations. The highest value of load resistance
occurs when the stub is at the front of a cascaded line
filter, and the lowest bound when the stub is across the
load. If the prescribed load resistance falls within these
bounds we may proceed with the filter synthesis and, as
each cascaded line is removed, compute [(42c) and
(42d) ] the bounds on Ry with the stub at the front, or
at the rear of the following line section. At the particular
line section where the prescribed load falls between the
two computed values, the partial stub extraction meth-
od described previously is used to realize exactly the
given terminating resistance.

It is the purpose of this section to determine bounds
on realizable terminating load resistance from the pre-
scribed insertion gain function of the cascaded line net-
work when this function has a simple zero of transmis-
sion at the origin in the N plane. One wishes to know the
bounds without proceeding with the detailed synthesis.

Referring to Fig. 7, the input admittance with the
stub at the front of the filter has the form

Vs
y(\) = ~ + (50)

where Yy is the characteristic admittance of the stub,
and the other quantities are as indicated on Fig. 7.
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i 0 o
R(Lq,_ = TI‘ )
L
Fig. 7. Schematic of single stub-cascaded line system.
Then
Re y(0) = gz. €19

Atany frequency, the input conductance R, Re y(j{),
normalized to the generator impedance R,, is related
to the scattering coefficients of the stub-cascaded line
network (normalized to R, and R;) by [16]

[ sie?

Tt sl [T+l

(52)

The second relation of (52) follows because the trans-
mission line network is lossless.

Now, by (51)
R, Rey |)\»0 = R,g1. (53)
Hence, with
1— Ry
Su = T
14+ Ry
we have
11 12‘1+1~Rﬂ2 4
meT 1+ Ry |1+ Ryl
and using (50) with ,(0) =g, and A=3Q
2 4
s 14+ sn |>\»0 = B
14+ Rogr)? + ———
a+ gL o -
402
= (54)
RS2V 5% gu0

In order to utilize (52) to determine a constraint on
the load resistance, we must presume a form for 18121 z,
the available gain function of the system. Let us use the
single stub band-pass function of (6). Then applying (3)

1 —¢€
N ezfl(xﬁz

o — «?

1 — e _
1 + e cos (2no + 0)

(55)

| sie]? =

where €fi(x?) = H,41(x?) is an even polynomial in x.
Hence, using
sin?®  a?(1 — cos?) ¥ — &?

(56)

cos? @ x? x?

where 8 and x are defined by (29b) and (24), respec-
tively, we obtain
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o |2 1— ¢ R2V g 1 1
L = Rygr = : : & Q:f el A= — P (60)
| 1 + S11 2 Q-0 1 + e2f1(a2) 4 a2 —_ 362 0 92 1 _ [ .5‘12<_]Q)1 RQYS
or 2w
"~ §= (61)
(1 — )R, Vs 57 R(Q + P)
L= — . . . .
4€e’f1(a?) We may substitute this in (57a) or (37b) to determine
and Rr=1/gs
- 2 2 2
Ji@®) = (@ — a?) cos (2 + 8) [ (5TD) Ry = B, D@ P o 0P (620)
(1 — a’r?
If the gain function is of the form of (10), then (57a)
becomes and
@R,V . R, = &, LLDCHPS (62b)
88 = Jaria) (57¢) o
with where C as defined by (62a) or (62b) is therefore only
function of the gain characteristic.
Fie®) = (a7 — 4) cos? (1 + 8) | (57) a function gain acteristic

Equations (57a) and (57c) are essentially identical
(e2<1) except for fi and f,.

We thus have a relation between g; and the stub
characteristic admittance Yg. In order to solve for gz
in terms of known parameters [i.e., € @, f(a?) and R,]
we must seek an additional relation. This is obtained
from gain-bandwidth theory.

Consider a generator R, feeding a lossless two-port
terminated in Rp=1/g;. At the input, an inductance
L is in shunt with the two-port. This emulates Fig. 7 in
the A plane with L= Y.

Suppose the scattering parameters of the lossless two-
port (including the shunt stub) are sii(A), s22(N), s1(\)
=51 (\), normalized to R, at port one and Ry, at port two.
Then, because of the stub of shunt reactance=L%Q
= V51Q2, the following integral relation must be satis-
fied [17], [18]

© 1 1 27
f — N ——dQ = — — P,
0 Q2 |311I2 RgYs

If the lossless two-port only contains commensurate
transmission lines then s;;(\) is a rational function and
in the preceding expression P is given by

(58)

P=> 1 >0 (59)
k >\K

where Ag are the right-half plane zeros of s;(A), and P is
a positive real quantity since the zeros have positive
real parts and are real or occur in conjugate pairs.

The integral expression (58) may be expressed in
terms of the prescribed insertion gain function ] s1(GR) I 2
since for a lossless two-port

1= [suG®) 2= [suG) |

Thus the constraint of (58) becomes

Thus with the stub immediately extracted at the gen-
erator end of the network, the ratio of load to generator
resistance is

Ry
B+ Py

R (63)

where Ry, is the load obtained by synthesizing the net-
work by first removing the stub.

In order to determine the effect of extracting the stub
last, i.e., at the load end of the network, we may use
the same gain function |s;;|?2, but we must synthesize
the cascaded line network from the back end and adjust
the back end resistance so that the generator resistance
which now plays the role of termination is R,. The only
effect of this is to interchange R; and R, in (63) so that

R,

Rips

=CQ+ P)? (64)

with Rzs the terminating resistance when the stub is re-
moved at the load end of the cascaded chain, and Q and
P as previously defined.

The final problem in using these relations to obtain
the bounds on Ry is to ascertain the value of P. This
parameter is not unique, but depends on the choice of
zeros for su(N).

The prescribed available gain function is s;o(A\) sia{ —N\).
The function si(N) is obtained by factoring si1(\)s11(—N)
=1—s513(\)s12(—N). In this factorization process the
poles (denominator zeros) of si;(A) must be in the left-
half A plane, but the zeros may be distributed in a vari-
ety of ways. These zeros will occur as image pairs about
7 in theleft- and right-half planes, and will be either real
or occur in complex conjugate pairs. Thus the zeros of
su()su(—N\) will be symmetrically located with respect
to both the Z and jQ axes. If the degree of s (A\)su(—N\)
is 2n we may select any # of the zeros for s;;(A) provided:
a) they form conjugate pairs; b) if a zero \; is selected
its image zero with respect to the jQ axis is not used.
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Let us suppose that any permissible set of # roots is
chosen for the numerator of su(A\) from the 2z roots of
su(N)su(—N). Denote this choice as pi, and the value
of P (59) as P;. A complementary set of roots p; is de-
termined with all the left- and right-half plane roots
of py interchanged. This gives P the value P,. Suppose
that P1> P,. Further, let the value of P be P, when all
the # roots are chosen in the right-half plane. Clearly

this is the largest value of P and
P1+P2=Po. (65)

Now when the stub is at the head end of the chain,
(63) applies. Let the two values of (Rzi1/R,) for the
complementary choice of roots py and p. be 711, 712

Riy

=z =7y = C(Q + P1)? (zeros prinsi(A))  (66a)
Ry .
—E = rry = C(Q + P3y)? (zeros psinsii(A)). (66b)

g

The parameter Q only depends on the prescribed gain
function so it is the same in both (66a) and (66b).

Similarly, let 73, 714 correspond to the normalized
load resistance values (Rrs/R,;) when the stub is re-
moved at the load termination of the transmission line
chain,

If the input scattering coefficient of the chain is s11(N)
normalized to R, and the back end scattering coefficient
is see(A\) normalized to R, then the unitary require-
ment on jQ=X\ imposes

)
312(—)\)

The function s;2(N), as determined from the gain func-
tion form of (1) must be

322()\) = — S11(—)\)

(67)

A1 — A2/
D.N)

where D, (\) is a Hurwitz polynomial of degree » in .
Then denoting

Sm()\) = i (68)

_ N11()\)
S11 = T Dn():)— (69)
we deduce from (67)
_ Nu{—N\)
s2o(N) = + —‘5‘"(_)\)— (70)

There is actually no ambiguity of sign since the pres-
ence of a stub forces the input reflection factor at dc to
be that of a short circuit, hence the sign in (70) is
chosen so that

522(0) = — 1 (71)

The consequence of (70) is that if a set of zeros is
chosen for sii(\), then the complementary set appears
in ssa(A). Hence if the set py is chosen for su(N), we get
po in s22(\) and when the stub is at the rear (64) gives
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1 1 .
ri3 = m = T—L; (zeros pqin siy).  (72a)
Similarly
1 1 .
714 = m = . (zeros poin sip).  (72h)

These results are summarized in the following table.

Stub Roots of _ Roots of
Location su(N) ro=Rup/R, s22(A)
Front P r11=C(Q+P1)* D2
Front D2 (87 CfQ‘*_PZ)Z P1
Back I21 rLg=—— P2
¥L2
Back Da F4=—— D1
L1
With P> P, the table indicates that
711 2 Yig (732)
r13 > ¥La (73h)

Furthermore, we have already shown that when the
stub is located at the front, it gives rise to the largest
value of terminating resistance for a prescribed reflec-
tion factor function. Hence with the p; zeros in si(M)
we must also satisfly

rL1 2 13 (74a)
and with p, zeros in si(\)
7Ly > TLa (74b)

The absolute maximum for 7z must occur for the
largest value of P, i.e., when all the zeros of si1(\) are in
the right-half plane, ie., P=P,=P;, rp=+1;. Then
P,=0 and, referring to (74b), the minimum value of
rr=rrs. Thus

¥ [—max = C(Q + P0)2 (758)
- ! _ ! (75h)
Tmin T C(Q + P0)2 h ¥ L—max ?

However, it may not be possible to realize all values
of 71 between these limits. Two cases may be distin-
guished by referring to the inequality constraints of (73)
and (74).

Case 1: r13>1, P1> P,. For the distribution of zeros
P, corresponding to 7z as in the table rz1 > 75 >1 and
by the stub extraction technique we may defer the stub
removal until the very end of the chain and obtain
ra> 75> rrs. On the other hand, we may place the com-
plementary zero set p; in su(\) and, by deferring stub
extraction until the end of the chain, obtain r2>7y
>r14. As indicated in Fig. 8 we can therefore cover the
entire range between rz1 and r .. Hence

Case 1: 7z > 1; (76%)

74 S rp L
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CASE |

1

g flz W

() (5)

CASE 2

™7
() ()

Fig. 8. Range of terminating load resistance.

Now suppose

Case 2: r1<1. Then the inequalities demand the dis-
tribution shown for Case 2 in Fig. 8. Thus with all zeros
1 in su(\), the stub in front gives rz; and by stub ex-
traction we can only cover the range 711 >75> 713 With
the complementary set of zeros ; in su(\) we cover the
range rre > 712> r s and, since these ranges do not neces-
sarily overlap, there may be gaps as shown in Fig. 8.
Thus

(76b)

Case 2: 770 < 15 701 2 71 2 713, 710 2 #1 2 714

Of course, we always have the option of altering the zero
distribution in s;;(\) to attempt to realize the continu-
ous coverage of Case 1, Fig. 8.

It is also clear that a sufficient condition for obtaining
all values of 77 nin <71 <71 max is that Case 1 apply
when zeros corresponding to p; are all in the right-half
plane, and p, is the complementary distribution without
right-half plane zeros. Hence, a sufficient condition for
maximum coverage is obtained from Case 1 as

¥ L—min S 7L S ¥I—max fOI‘ CQ2 Z 1 (77)

The quantity CQ? can be computed directly without
factorization from the prescribed gain function, al-
though numerical integration to obtain Q may be re-
quired. Furthermore, (77) is a sufficient condition that
assures 7, =1 is attainable, i.e., that a band-pass filter
with a simple dc zero of transmission can be realized
with load and generator resistance equal. More gener-
ally, if (77) applies, this is sufficient to assure the real-
ization of a broadband transformer with any resistive
termination between the values CQ? and 1/CQ2.

In order to aid in the application of (77), a rough
approximation of C and Q may be derived. First note
that if the gain function of (10) is used

1

? = 78
l Sm] 14 € cos? (ng -+ &) (782)
and if (55) is used
1—é
| 122 =
1+ € cos 2ugp + 8)
= ! 78b)
h 2¢? (

14 ; cos? (ngp + §)

—_
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Both of these equations have the form

1
1+ 4% cos? (ng + §) .

(79)

| sie]? =

In order to estimate Q of (60) it is necessary to approxi-
mate the integrand 1/Q2 In 1/ Isu[ 2. In the pass band
we may suppose that ]sm| %is flat and is represented by
its average value. In this region [ sm] 2 oscillates between
1/14+?% and 1/1 —+2. Hence the average value of I sml 2
is

0<2<1 |silavt= —1— 2te (Eq. 78a)
2 14 ¢

0<z<1 ISIZIAV.2 = ! (Eq. 78b).
14 ¢

With |su|2=1—s1|? we obtain

€ €
0<x2<1 2= -———-_— (Eq.78b) (80
Se s lsniA 21+ &) 2 (Eq ) (80a)
e2
0<x<1 | s11 IAV,2 = Tr GZE €? (Eq. 78a). (80b)

Since the edge of the pass band occurs at x=1, or

Q=+/a2—1 (see Fig. 3)

Q f°° ! 1 ! aQ f"“_‘:l ! 1 ! aQ
= ———— n— = —_— ———
o 2 |snl? 0 2 nl511|2

[ —n Gopf =0t 0 (81)
and
Qp == f i i In ———1— aQ
Ea @ [sufavt
or
Qp = —1— In 3 (Eq. (80a)) (82a)
Vat—1 ¢
QOp = ——1——_**_ In — (Eqg. (80b)). (82b)
Vol — 1 2

To estimate Q4 we note that cos? (np-+£)>1 in (79)
for 1 <x<a. Thus

v? cos? (np + §£)

sl =1~ [snu]= -
1+ y? cos? (np + &)
1
~] - 1 <z< a
v? cos? (ng + §)
Hence
1 1
1 1<zLa (83

n =
I S11 ‘2 v* cos? (n¢ + £)
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Now use the approximation of (33) for cos? (ng-§)
with ¢g=1

1 a2 — 1
cost (g + §) = - <2x>m+1>(— )

a? — x?
K%?
T Wiy o &
where we have employed
a? — g? a?
Q= . %t = P (85)
and
K? = 22(a? — 1), (86)

Then substituting this in (83) we may approximate
the integrand of Q4 and obtain

v Vil 1 /702(1 + Q2)m
Qa = — (——-—( ) )d&l
0 Q2 v2K 202

1

Va1
= 14 @)"dq.
viK?%a? j:) ( )

(87)

For the gain function of (78a) we use v2=e¢?; for the
gain function of (78b) we use y2=2¢.

Finally we may write C(e2<<1) from (62a) and (62b)
as

o _ @)

o’

(88)

with f=#i or f; depending on whether the gain function
we employ is that of (80a) or (80b). In either case we
may use the approximation (33) which applies when
1<x<ea, and estimate fi{a?), fo(a?) with the aid of
(57b) and (57d) as

fila®) = (a2 — 32) cos (216 + 8) | sa
2(a® — x?) cos? (np + £) — (a? — x?) |:c=u

1(2a) 20+ (o2 — 1).

I

i

(89a)
Also
fole®) = 3fi(a?).

A final, important result concerning the range of pre-
scribed load resistance can be deduced for the equal-
ripple gain functions of (78a) and (78b). Note by (26)
and (82c) that the numerator polynomial |su|? as a
function of x is of degree 2(z+1). Hence the degree of
the numerator polynomial of s;;(A\) cannot exceed n+1.
Also, the zeros of s11 occur as the argument of cos(ng+£)
ranges over the interval 0 <(n¢p+£) <(n+1)m, so that
there are (n+1) real zeros in sy, i.e., all its zeros are at
real frequencies. Furthermore when x=0, &=m/2
[(8a)], and if # is even then (n¢+£)|s=0 is an odd mul-
tiple of 7/2, so that cos(ng+£) has a zero at x =0 when
# is even corresponding to a zero at A = ., We may sum-

(89b)
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marize as follows: All the zeros of s;3(\) occur on the jQ
axis (real frequencies), and the degree of the numerator
is #» when # is even (to allow for the zero at A= ), and
n-+1 when # is odd. Thus the equiripple gain functions
discussed here result in functions si(\), which have no
right- or left-half plane zeros (they are all on the bound-
ary). The resultant networks must then have su()\)
=5p(N), and P;=Py==0. It then follows from the table
that CQ?=rp=r1s, 1/CQ2=r13=r1s Further, (74) re-
quires 771 2>71s, hence CQ22>1/CQ?; therefore CQ*>1.
Therefore the equiripple gain functions of (78a) and (78h)
result in lerminating loads which are always adjustable
between (1/CQ2) <r,<CQ2>1.

A major result of this paper may therefore be sum-
marized as the following theorem:

Theorem: The equiripple band-pass gain function of
(79) containing a zero of transmission (infinite loss) at
dc may always be realized as a cascaded transmission
line structure with, at most, two short-circuiting stubs.
Using this function, a load to generator resistance ratio
r1,=R1/R, may be realized anywhere between the limits

— < r.<rn
L1

where, |in (82), (83), (88), and (89)]
Y1 = CQ2 2 1.

Thus, a load resistance equal to the generator resistance
is always realizable by appropriate stub extraction from
the equal ripple gain functions considered here.

As an example let us consider the synthesis of a two-
line cascade with a single shunting stub

1 — ¢
l S12 |2 = .
1 4 € cos (2n¢ + &)
Choose the following parameters
¢ = 0.01
n=2
a = 2.

Let us determine the approximate value of load re-
sistance Ry= CQ? associated with a design which places
the stub at the head end of thechain. Since, by our theo-
rem, this load resistance must equal or exceed unity, we
may design a structure by which appropriate stub ex-
traction realizes any termination between R, and 1/R,.

We may use the approximating formulas to evaluate
Ry. Thus, by (87), since we are using the gain function of
(78b), [see (86) for K2]

1 Vai-1
f (1 99)"dQ
0

04 = agim

2(0.01)(48)16 [Q T3ty

0.54.

Q3 95] V3

0

Il
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We evaluate Oz by (80b)
1 1 In 100
= h’l —_ = — = 266
Ve —1 & V3
The value of fi(«?) is approximated by (89a)
f1(4) = 3(4)°(3) = 2(48)(64).
Thus, according to (88)

oo 0.01(21(428)(64) s

Qr

Hence, the terminating resistance is estimated at

Ry = C(Qa+ Or)*
o2 1.55(3.20)2 = 15.99.

By (61) the stub characteristic impedance is approxi-
mated as

1 R 3.20
Zg=— = oY ~ T = 0.513.
YS 27!' 27r

If the gain function is constructed according to (7) we
have

1
cos [2(2¢) + 8] = R

a2
[28(564+32+/3) - x4(88+48+/3) +42(39+16+/3) —4].
[Note that this gives fi{a?) =2(48)? rather than the

approximated value 2(48)(64). ]
The function

1 — €
1 - € cos (2ng -+ 8)

2 —

I S12
for €=0.01, n=2 is plotted on Fig. 9.

et __ o
1+¢? cos(zng+£)
«2=00l

[’:2!2 ;z - ico

100

[ ! I

Band-pass response for cascaded line filter with
a single stub and two lines.
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The input reflection factor without right-half plane
poles is now obtained as

0.8252% + 3.46
A3+ 3.355A% -+ 4.305) + 3.46

Su()\) = -

Note that, as expected, the zeros of si1(\) are on jQ, and
the numerator degree is # =2, since # is even. This
causes no difficulty in the integral of (58), since the
boundary singularities of the integrand are logarithmic
and the contributions of the small semicircles which
avoid these singularities are zero. Thus the principal
value of the integral may be used.

The input admittance is now determined from sy;(\) as

A%+ 4.18\% 4 4.305\ + 6.92
A3 4 2,53\ + 4.305)

T\ =

Thus, if the stub is immediately extracted
Vs = res Y(\) h=o = 1.605

Zg = —— = 0.623

1.605

as compared with the approximate 0.513.

If the cascade lines are now synthesized, the result is
a 1-to-17.5 ratio transformer as shown in Fig. 10. The
terminating resistor by exact computation is 17.5 ohms
as compared with the approximate 15.9 ohms. It should
be noted that this is perhaps better agreement than
might normally be expected considering the nature of
the approximations. In any case, we are assured that
R;=1 is realizable and indeed any load resistance be-
tween (1/17.5) LR;<17.5 may be achieved with the
prescribed gain function. It is rather remarkable that
a wide variety of broadband impedance transformers
are therefore realizable from the same insertion gain
function; e.g., in this case all impedance ratios between

1-to-17.5 and l-to-#g are realizable with two lines

and, at most, two stubs, all transformers having the
same reflection losses over the band.

A

7,250
06230 | 7 2050  z,:865Q v

(a)

(b)

Fig. 10. Alternate designs of band-pass transmission line structure.
(a) 17.5-to-1 band-pass transformer. (b) Band-pass filter with
one-ohm terminations.

If Ry =1 is desired the stub extraction technique may
be applied and the result is shown in Fig. 10. In this case
only one stub, rather than the generally required two,
was needed, located midway down the chain, as indi-
cated in the figure.
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Wave Propagation in

Sinusoidally Stratified Dielectric Media

C. YEH, veEMBER, TEEE, K. F. CASEY,

Abstract—The problem of the propagation of TM waves in a
sinusoidally stratified dielectric medium is considered. The propaga-
tion characteristics are determined from the stability diagram of the
resultant Hill’s equation. Numerical results show that the stability
diagrams for Hill’s equation and those for Mathieu’s equation are
quite different. Consequently, the dispersion properties of TM
waves and TE waves in this stratified medium are also different.
Detailed dispersion characteristics of TM waves in an infinite strati-
fied medium and in waveguides filled longitudinally with this strati-
fied material are obtained.

INTRODUCTION

HE PROBLEM OF electromagnetic wave propa-
Tgation in a sinusoidally varying dielectric medium

is not only of interest from a theoretical point of
view but also possesses many possible applications [1],
[2]. For example, a section of waveguide filled with this
type of inhomogeneous dielectric may be used as a band-
pass filter in the mm or in the optical range. The use of
an ultrasonic standing wave as a modulating device for
certain pressure sensitive media, such as carbon disul-
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The authors are with the Dept. of Electrical Engineering, Uni-
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fide, pentane, or nitric acid at optical frequencies to
achieve a sinusoidally varying dielectric medium may
be proposed. Other applications, such as the study of
acoustically modulated plasma column and the analysis
of sinusoidally modulated dielectric slab antenna, have
also been proposed. Furthermore, the results should be
very useful in the study of wave propagation in solids
3],
It can be shown [2] that two types of waves, propa-
gating in the direction of the dielectric inhomogeneity,
may exist: one with its electric vector transverse to the
direction of propagation called a TE wave, and the
other with its magnetic vector transverse to the direc-
tion of propagation, called a TM wave. The resultant
differential equations for TE waves and TM waves are,
respectively, the Mathieu and the Hill differential equa-
tions [4], [5]. The simpler case of the propagation of
TE waves in a sinusoidally stratified dielectric medium
has been considered most recently by Tamir, Wang and
Oliner [1], and discussed briefly by Yeh and Kaprielian
[2]. The purpose of this paper is to consider the problem
of the propagation of TM waves in such an inhomoge-
neous medium. Since the solution of a Hill equation is
required, it is expected that the results will be rather in-



